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We study thermally activated, low-temperature equilibrium dynamics of elastic systems pinned by disorder
using one loop functional renormalization grodfRG). Through a series of increasingly complete approxi-
mations, we investigate how the field theory reveals the glassy nature of the dynamics, in particular divergent
barriers and barrier distributions controling the spectrum of relaxation times. First, we naively assume a single
relaxation timer, for each wave vectdk, leading to analytical expressions for equilibrium dynamical response
and correlations. These exhibit two distinct scaling regiigsesling variable§k? Int andt/ 7, respectively,
with T the temperaturef the energy fluctuation exponent, amg- eCkfﬁ’T) and are easily extended to quasi-
equilibrium and aging regimes. A careful study of the dynamical operators encoding for fluctuations of the
relaxation times shows that this first approach is unsatisfactory. A second stage of approximation including
these fluctuations, based on a truncation of the dynamical effective action to a random friction model, yields a
size (L) dependent log-normal distribution of relaxation timeffective barriers centered arouhd and of
fluctuations~L%2) and some procedure to estimate dynamical scaling functions. Finally, we study the full
structure of the running dynamical effective action within the field theory. We find that relaxation time distri-
butions are nontrivialbroad but not log normaknd encoded in a closed hierarchy of FRG equations divided
into levelsp=0,1,...,corresponding to vertices proportional to §hta power of frequency»,P. We show how
each levelp can be solved independently of higher ones, the lowest(pmd®) comprising the statics. A
thermal boundary layer ansafZBLA) appears as a consistent solution. It extends the one discovered in the
statics which was shown to embody droplet thermal fluctuations. Although perturbative control remains a
challenge, the structure of the dynamical TBLA which encodes barrier distributions opens the way for deeper
understanding of the field theory approach to glasses.
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I. INTRODUCTION the quenched random pinning force, af{d,t) is a thermal
Extremely slow dynamics is a ubiquitous property of noise. Here is hed-dimensional internal coordinate of the

complex and disordered materials. Despite many decades SPSUC object. Botlf and { are Gaussian random variables
research, current understanding of sgtdssymotion is lim- With zero mean and second moment

ited to phenomenological modelgl], mean-field theory

[2—-4], and abstract caricatures in terms of the dynamics of f(u,nfu',r')=Au-u)r-r), 2
small numbers of degrees of freedom in a complex energy

landscapé€5,6]. In addition, exact solutions in one dimension

(e.g., for the random field Ising modgr]) little is known ’ oy — NSV

about the nonequilibrium behavior of realistic models. True (L DL A0) = 20T & = 1)t =), @
disordered materials, from spin glasses to supercooled lig-

uids to the pinned elastic medium, involve extensive numwhereT is the temperature and we set Boltzmann’s constant
bers of local degrees of freedom such as atoms and spirkg=1. The value ofp generally sets the relaxation time scale,
moving collectivelyin a random environmer8—10, with  €.9., herep=t,cA?, t, being the microscopic time scale, and
either external or self-induced randomness. The pinned elag: the short scale momentum cutoff. In general, one may be
tic medium being the simplest model involving such physicsinterested in a variety of thermal and sample-to-sample fluc-
we study it as a prototype. It is of interest by itself for nu- tuations of the system, as well as various responses of the
merous experimental systems such as vortex lattices in sgystem to external probes. We will focus on the simplest of
perconductor$10,11], interfaces in magnefd2,13, charge the latter, described bffinearn response functions

density waveg14], and Wigner crystal$15]. The equation

of motion is
_ [ ou® @
7/(7turt = Cvrzurt + f(urt1r) + {(r,t), (l) Rrr’tt’ B &grr(t,) '

whereu(r) is a height(or displacementfield, » a bare fric-
tional damping coefficient; is the elastic modulud(u,r) is  in a given disorder realization, and its disorder average
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Ry = Riopr o+ (5) analytical expressions for the equilibrium response and cor-
relation which exhibit two distinct scaling regimes with scal-
At equilibrium, both the single sample and the averaged reing variablesk’ Int andt/ 7, respectively §=d—2+27 is the
sponse functions become time translationally invariantenergy fluctuation exponent ang~ eck"’/T)_ However, sev-
Ri—rr 0 =Ryt gty @NAR 1 i =Ry oy eral features of these results are found to be unsatisfactory,
Equation(1) has the usual Langevin form, and guaranteesuch as the nonmonotonicity of the response as a function of
the existence of a stable equilibrium probability distribution,wave vector. A more complete description including time
provided, as assumed here, thé,r)=-dV(u,r)/du is of  scale fluctuations thus appears necessary.

gradient form. The equilibrium distributiogstrictly speaking That sample to sample fluctuations should play an impor-
defined in a finite size samplehas the Boltzmann form tant role both in the statics and dynamics of disordered
p(u) «cexp(—=H[u]/T), with glasses is indeed expected from phenomenological argu-

ments, e.g., the droplet scenalifib,26], which appears to
describe simpler models such as K@) relatively well, at
least in low dimension§27]. Let us recall its main conclu-
sions. In its simplest form, it supposes the existence, at each
Three universality classes of special interest are usually corlength scaleL, of a small number of excitations of size
sidered:(i) short range disordeA(u) which describes, e.g., 5@ ~L¢ above a ground state, drawn from an energy distri-
random bondRB) disorder for magnetic domain walldj) bution of width SE~L? with constant weight neasE=0.

long range disorder which describes, e.g., random iRl  While typically the elastic manifold is localized near a
disorder, andii) random periodig¢RP) A(u) which describes ground state, disorder averages of static thermal fluctuations
pinned density waves or lattices. Although these systems difat a given scale are dominated by rare samples/regions with
fer in their details, e.g., in their roughness exponentr’,  two nearly degenerate minima. For example, as a simple but
they do not yield qualitatively different behavior in their dy- remarkable consequence, tfn)th moment ofu fluctua-

H[u]:fddr[§|vU|2+V(u(r),r) . ©6)

namical response studied here. tions is expected to behave as
The aim of the present paper is to develop an approach —— )
based on the renormalization grotRG) to study the low- (U = (W)™ ~ ca(TILILZ, (7)

temperature dynamics of pinned elastic systems described Byhe droplet picture supposes that the long-time equilibrium
Eg. (1). Although we focus on equilibrium dynamics, some gynamics is dominated by thermal activation between these
of our considerations are also relevant for noneqU'“b“Umquasidegenerate minima controlled by barriers of typical
relaxation. It was shown that to describe the statics at equiscaleu, ~ LY. Little is known about the distribution of these
librium one needs to follow the full correlator of the random payriers, but there is some eviderjé8—3( that =~ 6. Even
potential(or the random forceusing a functional RGFRG) 3 modest distribution of barriers, however, due to the Arrhen-
method in ad=4-¢ expansion[16,17. Several extensions jys law 7, ~eY'T, yields relaxation time scales with an ex-
describe correlated disordgt8], the driven dynamics near tremely broad distribution a§—0. Some probes of this
depinning[19-21 and the small applied force, thermally ac- proad distribution are the relaxation time moments which

tivated, creep regimg22]. However, until now the FRG has may be defined in a variety of ways. One begins by defining
not been used to study the dynamical response and correlgqe relaxation time moments in a single sample,

tions in equilibrium or aging regimes, nor to probe the cru-

cial question of the distribution of the relaxation times. These ny = (@) wd Lo

are important quantities directly probed in experiments (= 0 t ”,t Rrrrts
where the system is often dominated by fluctuations or not

able to reach equilibrium within the experimental time which, for a particular disorder realization, describe the re-
scales. We investigate this problem in three stages, of insponse of the center of mass coordinate {sgatially) uni-
creasing accuracyand, unfortunately, complexityonly in ~ form force. Forn=1 ({t)_) this gives one definition of the
the last stage attempt is made to be exhaustive. A companiaelaxation time of a single sample. A set of disorder-averaged
paper(Ref.[23]) is devoted to the statics. A short account of moments may be obtained then by directly averaging the
both works can be found in Ref24]. Some of the present above objectst™, giving the averaged response of the sys-
considerations concerning approximate schemes have alsem
been discussed independently in R&b].

The first question investigated in the present paper is the ™ =P f
validity of the single time scale approximation within the L=4
RG. Specifically, in the first part of our studgec. ) we
use, as was done in previous wofld®,20,22, the simplify- Alternatively, thedistribution (from sample to sampjef the
ing hypothesis that the relaxation of each internal mode, ofinaveraged relaxation tim@), is described by a second set
wave vectolk, is controlled by a single relaxation time scale of moments(t)’. In general, one may construct many such
7. This allows us to obtain closed equations, within the oneobjects scaling dimensionally &% but with different physi-
loop FRG, for the general two time response and correlaeal content. Mathematically, this is accomplished by averag-
tions, as measured in aging experiments. It yields, in théng arbitrary products of the single sample moments, i.e.,
equilibrium regime on which focus from then on, interesting(tP1), - - -(tPN), , with Elepj:n. Any of these tith” moments

8

’ dtt"Ry (9)

0

g=1/L
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may behave as—e*MUeLIT \with a(n)=n, or grow even archy involves functions parametrizing the local cross corre-
faster with In7"> LY, nor is it clear that the different defini- lations between pinning disorder and random relaxation
tions for a givemn exhibit the same growth. Indeed, we will times. The previous approximation corresponds to projecting
ultimately find different operators in a dynamical field theo- these FRG functions to their values at zero, while in fact the
retic formulation corresponding to each different type of mo-full set of nonlinear differential equations obeyed by these
ment, and some indications that indeed different growth rateBinctions need to be solved, a formidably complex task. A
obtain for each of these. A theory of these time scales i¢hermal boundary layer ansafZBLA) appears to be a con-
crucial to understanding both equilibrium response and corsistent solution. It extends the one discovered in the statics
relations and to near-equilibrium phenomena such as cregghich was shown to reproduce droplet theory type behavior
[10,11,13,2k Extensive calculations are possible in certainin thermal fluctuations. Here it yields a natural growth for
zero-dimensional toy mode[49]. Although some analytical moments of relaxation times measured by nontrivial expo-
results have been obtained f® 1 within mean-field limits ~nentsa(n) # 2n”-n determined by eigenvalue problems. Al-
[31-33, these do not include thermal activation over diver-though perturbative control remains a challenge, the struc-
gent barriersU, ~L?. The FRG[16,19-21, on the other ture of the dynamical TBLA which encodes for barrier
hand, extended to nonzero temperat{it8,22, seems to distributions opens the way for deeper understanding of the
capture, already at the level of the single time scale approxifield theory approach to glasses.
mation the existence of these growing barriers. However, The detailed outline of the paper is as follows. In Sec. |l
until now neither the rare events nor fluctuating barriers havave recall the standard results of the FRG for the equilibrium
been obtained in this approach. dynamics using a single relaxation time approach. We then
In the main part of our studySecs. lll and I\ we thus ~ give a qualitative derivation of the two scaling regimes for
investigate how relaxation time distributions appear withinthe equilibrium response and correlation functions. The de-
the FRG. We first show that the equation of motidngen- tailed equations obeyed by these functions are derived using
erates under coarse grainingrandom friction term #(r) a Wilson scheme in Appendix A and their analytical form is
(equivalently a random relaxation time~1/7). It is then  analyzed in the equilibrium regime in Appendix A and in the
natural to define, as a toy model, a random friction modePding regime in Appendix B. In Sec. Il we go beyond the
which, in the absence of pinning disorder possesses a marfiingle relaxation time approach. The random friction model
fold of fixed points indexed by the full coarse grained prob-is introduced in Sec. Il B. We then incorporate pinning dis-
ability distribution of the friction. A highly nontrivial ques- order in an approximate way in Sec. Il C, analyze the result-
tion is how this distribution will flow under RG due to ing distribution of relaxation times and show that it become
feedback from nonlinear terms when pinning disorder is rebroad. The breakdown of ther, scaling is analyzed in Sec.
introduced. We consider this question at the one loop levellll D. In Sec. IV we discuss the systematics of the structure
in two stages. of the dynamical effective action. It does contain the statics
In Sec. Ill we present a highly simplified analysis, but Which its recalled, together with its thermal boundary layer
with the merit of explicitly exhibiting the broadening of the ansatz solution, in its equilibrium dynamics formulation in
barrier distribution and allowing for some analytical expres-Sec. IV A. Then in Sec. IV B-IV E we display the hierarchi-
sions. It yields asymptotically a log-normal distribution of cal structure of the FRG equations and how a generalized
relaxation times, i.e., a nearly Gaussian distribution of effecthermal boundary later structure appears as a consistent so-
tive barriers centered arourd’ and of typical fluctuations lution determining the growth of the moments of the relax-
~L9/2_ Such a |Og_n0rma| tail Corresponds to the momen]‘_ation timeS through nontriVial eigenvalue pr0b|emS. We con-
exponentsa(n)=2n-n. This is compared with numerical clude in Sec. V with some general remarks. Finally, a set of
results[28—3( in the case of a directed polymer, where theappendixes ela_borate on various details and calculated re-
width was fitted to~L?. The question of the width is impor- lated to the main text.
tant since a width~L?? is not expected to be large enough to
modify the creep exponent, as can be seen from reexamining
the calculations of Ref22] while a ~L? width [29] would Il. SINGLE TIME-SCALE APPROXIMATION
pose a problem to this order. We derive, within the same
approximate schem@ppendix B, closed equations for cor-

relations and response functioge fact that the width an epsilon expansion, thecaling functionsare obtained to

grows very fast can be exploited in a resummation of thq . . .
. ; . . leading order by a simple matching proceddREF). The
fastest growing terms in the dynamical part of the Mamnstatic equilibrium FRG for the random elastic problem is,

fS_'Qg'f:‘I R}ostetfu_nctltl)_g;iltWe find t??ﬁ the br_oadenlniq IS suf- aside from the complication of a functional fixed point, very
tlr::éeg étgr?ceoc;?ﬁl Esicealsr?mreeo'mee previous analysis, €.9-gimijar to such an ordinary RG calculation. The important
Xl Tk Ing regime. distinction is the nonanalyticity of th€=0 fixed point func-

Sgcnon v qontalns t.he ful[ systgmat|c analysis of Fhetion A* (u) which at finite temperature results in a narrow
running dynamical effective action. It is found that relaxation

times distributions are determined by a closed hierarchy opoundary layer for smali=T,e, whose width continuously
FRG equations, each levplcorresponding to an increasing decrgases under the FRG as the running effective tempera-
power of frequencywP can be solved independently of tureT, (see belowflows to zero. The corresponding growth
higher ones, the lowest one being the statie®. This hier-  of the mean-squared curvature of the effective potential felt

At conventional pure critical points, scaling emerges di-
rectly from the existence of a RG fixed point. Moreover, in
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by the manifold is a hint of unconventional behavior not Naive power countingsee, e.g., Ref416,17) indicates
present in ordinary critical theories. that all terms beyond those in Eq4.l), (12) are irrelevant,
The influence of this divergence is very dramatic in theso we for the moment neglect their generation under the
dynamics. In this section, we attempt to naively extend thé=RG. The flow of the random pinning correlatar(u) has
conventional RG approach to calculating response functionbeen derived many times previougli8—20,22. It is better
to the random manifold problem. This conventional approaclexpressed in terms of the dimensionless rescaled pinning
implicitly assumes the existence of a single time scatea  force correlatord,(u) defined such that
given wave vector as we shall soon see. This assumption
leads to somewhat unsatisfactory results for the response
function, forcing us to reconsider the distribution of time-
scales in Sec. Ill. Although we will ultimately conclude that
the single time-scale calculation is fundamentally incorrectWith Ag=Sy/(2m)?=1/[247%?I'(d/2)], and reads
it is useful to review the methodology of this approach.

A(u) = ge-f'e%'z,(ue-é'), (15)

We begin by reviewing the basics of the FRG. We employ AAU) = (e=20)A() + uA" (W) + TIA"(L)  (16)
the Martin-Siggia-Ros€MSR) formalism [34], in order to
use field-theoretic techniques. The MSR approach is based +A"(W[A(0) - A(u)] - A’ (u)2. (17)

on the generating functionakZ[h,h] for the disorder-

: . Here the fluctuation dissipation theorem ensures that the
averaged correlation and response functions

temperaturd =T is uncorrected but the effective dimension-

) less temperaturd =A;TA% 26 itself flows to zero, con-
z[h,ﬁ]:f DuDae—S{uvﬂPf PrUrp+heily (10)  trolled by the energy fluctuation exponef#d-2+2, the
n temperature being formally irrelevant. Here and in the fol-
o ] ) ) lowing we do not not make any spatial or temporal rescal-
whe[e the dynamlcs in Eql) is encoded in the action ings of coordinates or momenta.
Su,d]=S[u,u]+Spdu,a], with Study of the one loop FRG equation shows that, with the
proper value for the roughness exponéntO(e) depending
on the universality clasé€RB, RF, or RB, the dimensionless
disorder correlator convergemnuniformlyto a nonanalytic
“fixed-point” function A* (u) formally of order~O(e) asl
— 0, whose functional form is not important for this discus-
sion(see, however, Sec. IV for much more detrilkhe non-
uniformity of this convergence is due to a boundary-layer
centered oru=0, whose width decreases continuously with
cale[18,22. In particular one can show that, to this order

SO[U,C'] = f iart(?at - V2)urt - ;TJt (iart)(iart)a (11)
rt I

N 1 n e
Snt[uvu] == Eftt’ ('urt)(mrt’)A(urt - urt’): (12)

.

whereh, h are source fields, and we have put a overbar o

the friction coefficienty— 7 to indicate the mean, i.e., that it 18,22
is for now a constant uniform in space. As justified below we e _ 2
have set=1. We use the Ito convention to regularize equal- &TAT'A' O ==x" (18

time response functions, i.eR,(t,t)=0 and Rq(t",t):l/ﬁ

The disorder averaged response and correlations are given BUS asymptotically the curvature of the correlator diverges
with the scalgherey=|A’* (0*)|] is a constant depending of

Sut) the universality class, e.g., for periodic systegrsye, e=4
Ratit) = — = = (UgDido(t)s, 13 -d.
o) To one loop, all that remains is the renormalization of the
mean friction coefficient, since the elastic modulus is fixed
N =i (U (t) = ' by Galilean invarianc§¢l7,18,22 and the temperature by the
Caltt) = {UgDu(t) = (gD, 4 fluctuation-dissipation-theoreFDT). This was determined
The FRG in its Wilsonian formulation begins by introduc- in Refs.[18-20,22:
ing an ultraviolet(short distance cutoff A on the spatial o
Fourier wave vectors. In the FRG, this cutoff is progressively an="In, (19
reduced to\;=Ae™ (0<|< ). At each stage of the RG, the
spatial Fourier components of U are divided into “slow”
and “fast” modes, with momenta in the rangetR<A,e™®
and Aje9'<k<A,, respectively. The fast modes are then
integrated out, working perturbatively &, to one loop or-
der, andl is increased byl. This leads, in the limit of in- ,~8:T*/T, (21)
finitesimal rescalingll — 0, to a smooth renormalization of _
the effective action for the remaining slow modes, and hencghere B is the reduced bare inverse temperature arid
to continuous FRG equations for the running disorder cor=y?A%79/A4 a nonuniversal temperature scale. Equatit®)
relator A, (u). implies activated scaling[18,22 since the friction coeffi-

whereF,=—Z{’(0)~,_,+w)(2/'~l'| thus grows with the scale as

T, ~ Be”, (20)
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cient, which plays the role of a time scate /A%, grows  aging scaling forms and also show differences compared to

exponentially with the lengtie’: the mean field.

_ Many features of these results, however, point to prob-
— B, 4 lems with the single time scale assumption, as also discussed
= 7o €XP ;(e - (22 in Appendix A. The real-time response function is found to

be anincreasingfunction of wave vector at fixed time in the

[in d=4 one had’|=Be?/12 and B=X2A"2/(TA)]. logarithmic (X) scaling regime. This somewhat unexpected

Activated dynamics leads to ambiguities in a single time-(@nd possibly unphysicebehavior is apparently a very gen-
scale approach, as can be seen from a simple matching argéral consequence of the meeistenceof two distinct scal-
ment. We consider for S|mp||c|ty the equ”ibrium dynamiCS, Ing I|m|tS, and hence is inevitable given the S|ng|e time scale
in which the response and correlation functions are time@pproach. More significantly, the appearance of a sharply
translationally invariantTTl). It is then convenient to work ~definedr, in themeanresponse functio(in the Y regime is

in terms of both frequency and wave vector. The usual RG difficult to understand on physical grounds. Even(fan-

considerations lead one naively to expect that the respongm models involving only a small number of degrees of

function obeys the relation freedom, while a given sample may be characterized by a
longest relaxation time, the sample to sample variations of
R(w) = EZIRké(wﬂ), (23 this would generally lead, as espoused in the Introduction, to

the disappearance of such a time in the mean response. In the
collective elastic model considered here, interactions be-
tween the enormous number of modes with differing wave
vector (and hence differing relaxation rajesvould only
worsen the situation.

where 7,=€?7,/77,. We now obtain twdnequivalentscaling
forms by matching. In particular, if we chooke=1 (we set
A=1 for now), we find

1
R (@) = 5RO (0, (24)
11l. BROAD DISTRIBUTIONS OF TIME SCALES:
with SIMPLIFIED APPROACH
1 ~ A. Distribution of relaxation times and the f term
7 = —BOK-1) (25) o _
kK™ k2 ’ Up to this point, we have assumed that the dynamics at
. . each scale can be described by a single friction coefficient
If, however, we choosen=1, we find asymptotically 7=, which corresponds to a sharply defined time scale for
" relaxation. On general grounds, however, we should expect
Rff)= %m(l) R® %k"“n ol |. (26) extrem_ely broad distribution_s of relaxation times. This fol-
g \@ B lows simply from the Arrhenius law
Note that these two formsannotbe related by redefining the T = Tizingea) ~ To EXPU/T), (27)

two scaling functionsk 2, as can be seen from the fact that
In(wT) ~In w+(x/ Ok =(x/ 6+k’In w|)/k?, which isnot a
function of kf|in w| only.

The inequivalence of Eq$24), (26) appears to point to
the existence of two scaling regimes, which we will call the
X andY scaling limits. The first is formally defined by de-
fining the scaling variablé/=w7. With Y fixed andw, k
— 0, one obtains the scaling regime in E84). The second
scaling regime obtains witX=k?In | fixed andw, k—0.

To reconcile the two regimes, note that¥in- (y/ 8+X)/k?,
so that for fixedX, asw, k— 0 (the X scaling limi) Y — o,
The second scaling reginfiEg. (26)] thus appears to occur at
the “boundar_y"(Y:oo) of Fhe fir_st. . _ 7(N)dUy = VU + F(Ug, 1) + £(r 1), (29)

We have indeed verified this behavior, and obtained the ] o ) o
analytical scaling forms similar to those in Ref&4,2§ us- where, in order 'to m.aln_taln_ the stanpnary equn!brlum Bolt-
ing FRG techniquesinder the assumption of a single char- Zmann probal.:n.hty distribution function, the noise correla-
acteristic time scale parametrized by These calculations tions are modified to
are performed in Appendix A for eqL_Ji_Iib_rium gnd i_n Appen- 0 1)) =290 TS - 1) st -t'). (29)

dix B for the more general nonequilibrium situation. Inter-

estingly, the general equations for the response function in For simplicity, we will initially take 7(r) to be identically
this approach share some similarities to those arising in thend independently distributed at eaglaccording to the dis-
(infinitely connected and/or largd) mean field limit of a  tribution P(#). The distribution naturally enters the MSR
number of model glasses. As discussed in Appendices A anttheory via its characteristic function, which we parametrize
B their solutions exhibit several time regimes with variousby F(2):

which estimates the time required to overcome an energy
barrier of heightU, at scalek. At low temperature, even a
modestly wide distribution ofU, gives rise to extremely
broadly distributedr,. If this distribution is sufficiently
broad, it is no longer adequately characterized by its average,
and indeed many physical quantities may depend upon the
precise form of the distribution.

We now investigate how this distribution can be incorpo-
rated into the FRG treatment within the MSR formalism. We
will consider a spatially varying friction coefficieng(r),
with the equation of motioril) modified to
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7]( 2)

f ﬁrturtart’urt +e (36)
rtt’

+0oo
f dnP(m)e?” =, (30 T ===
0

The Taylor series expansion &{(z) thereby gives the con- vv_ith_ of course many higher order terms describing the higher
nected cumulants of friction coefficient moments, momentum dependence of ver-

tices, etc. As usual in field theory, correlation functions are
(- ™1 exactly evaluated at tree level using this effective action—
Flzl= > 5'™———2" (31)  thus they® term here has the meaning of a fully renormal-
m=1 m! ized second moment on the scale of the system (gizén-
frared momentum cutoff One may then consider the

(m) —[m]_ i X " . .
where 7™ =[7"]c is themth cumulant(connectegimoment v icaly defined relaxation time from E@) and construct
of #. For the continuum fieldy(r), the analogous expression jis’second moment

is
p( f ()()) p( f F[()]) (32) W:Laldm f ddt'tt’ f U e o)(Ur G
R OZAL) ) =8XR ar : rrqrors
r “ (37)

We initially assume no cross correlations betwegn) and  On physical grounds, in equilibrium, we expect that the latter
f(u,r), though these can to some extent be generated in peproduct of response functions in two “replicas” is the same
turbation theory. The single time scale model studied in theas considering the product of two subsequent responses in a
previous sectionand Appendices A and )Bwith 7(r)=%»  single replica, provided the two response measurements are
corresponds td=(z)=7z. Although this is not essential, we taken far apart:

shall assume here an initially narro@eut not & function)

distribution P(7). As shown in Appendix C, even if initially (Up 1)U Ty ) = lmmrluﬁrifurzt'aréo)- (39
F=7z, a higher-order analysis shows that a nontrivial distri-
bution is generated under coarse graining. This latter four-point function can be calculated using the

In the MSR formalism, the modified equation of motion €ffective action above. One finds
(28), (29) is described by the action
lim f
=% rriror,

= LZdRQOthOt’ + n(Z)Ld(RqO * I.QQO)'[(RQO * I.?qo)t/’ (39)

<urlt+7ﬂrirur2t’ﬁréo>
A —_— A PN 2 —=r A A
Solu,d] :J 710, AU — iU CV iUy = 7Ti04i0,  (33)
rt

- whereqy~ 1/L is the infrared momentum cutoff and the as-
S u, U] :f Flf (iartaturt_Tiartiart):| terisk denotes the convolution in the time domain. Integrat-

' t ing over the time coordinates and using the result of statisti-
cal translational symmetrR(qo,O)zlqu, one then obtains

()2 ~ (7LA)2+ 5 D14, (40)

We have definedp[z]:;ﬁfz[z] where E[z] starts with  For a not too broad distribution of friction coefficients with
higher powers o, to do perturbation theory using the aver- Scale independent, the correction due tg'® is vanishing
age friction coefficient. One immediate remark is that thefor d>4, and small compared to the first “disconnected”
statistical tilt/translational symmetqBTS holds[27], thusc  term (scaling as(t) ) for any d. However, for the glassy
will not be corrected and so we set itée 1. Note that the; ~ dynamics studied here, we will fing/? is exponentially
kinetic term could equally well be considered as an interaclarger thanz? as a function o, so that in fact the second
tion term, in the spirit of a “perturbation theory in” with ~ term is dominant. Thus the second moment of the physical
bare propagator simplﬁq,‘,,:l/qz [in real time Ry(t,t’) relaxation time(t)f indeed measures the coupling constant
=1/g?8(t"-t")]. Note also that for each realization, the in- 7? as promised.

stantaneous response function satisfies

1
_Ef“, (iG,) (IO, ) AUy = Upr). (34)

B. No pinning disorder: the random friction model

1
R(r,r',t-t'=0+)= mﬁr -r’). (35 We now turn to the FRG analysis of the modified action in
7 EQgs.(33), (34). We first considepnly the effects of random-
Averaging over disorder giveR (t—t'=0%)=1/7. ness iny, neglectingthe pinning disorde. This defines a

Although it may seem obvious, it is important to stress afandom friction model described by the MSR action with
this stage that the renormalized relaxation time moments aré=0. Remarkably, the random friction model represents an
measurable quantities. One can define the renormalized méfinite m?‘”'fdd of f'XEd points para_metnzed B{z]. In-
ments in the usual way from the effective actibnTaking deed, a diagrammatic treatment explicitly shows the absence
the same form as E@34), one has of renormalization of~[z] order by order irF. Despite this
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IK\
*
A\ r FIG. 2. Shifting of a time derivative from an internal lidie the
)

middle) to an external onéight) along a line of response functions
at T=0 (works for disorder as well aB vertices.

7./;;{’/*\/:_.\,;, £F2|:£iarta$urt1! (45)

and so on—the full systematics of these new terms will be
_ _ _ examined later in Appendix E and Sec. IV. It is important to
FIG. 1. Top: graphical representation of the disorder vertex,qie for consistency that there is also no feedback from
(double lines and of theF term vertex(the dots represent the time pioher gerivative terms such & back intoF. Graphically,
e e 1501025 igs. ) and 10),one can perfom fme egraton by
) . & : ) N parts along each line joining several vertices which leads to
tions of theF term to itself atT=0 which vanish(b) corrections to t [P0 ith p+a>1. Indeed ful rule i
orderF? which also vanishas all orders do—see tgxt erms J o Udity Wi . P+ . naeed a very u;e u ru(_e IS
represented graphically on Fig. 2. One can simply shift the

o o time derivative along any internal response line to the exter-
absence of renormalization, the random friction model reps, 4 one(at T=0 any diagram is a tree of such linesince

resents a nontrivial interacting field theory.
For simplicity, we sketch this here far=0. In this limit,
the vertex is ut<il]tat1utl>i0tl = ut&thtlvtiﬂtl (46)

schematically,

f NI{J iﬁrtﬁturt] . (41) == R d0;, — GUR, 40y, (47)
ro L

after integration by parts. In the Fourier domain, this rule is
just conservation of frequency along all solid lines, since the
interactions are all fully nonlocal in time and therefore do
not carry frequency.

To conclude, the apparent nonrenormalization Ff]
makes it tempting to define manifold of fixed point theories
indexed byF[z]. These fixed points are quite interesting and

ny nontrivial. For instance, the computation of the averaged re-
(J iarztzatzurztz) . (42
2

Diagrams occuring in the expansion Bf are indicated in
Figs. Xa) and Xb). The fields connected by dotted lines oc-
cur at the same spatial point, solid lines with and without
arrows indicateu and U fields, respectively. Considering a

product of the form
n
f (J i0, ¢ d U t) 1f sponse function af=0 can be mapped exactly onto the
n\Jy THER Uy problem of calculating the partition function for a self-
avoiding walk. This is developed further in Appendix D.
the only possible contractions contain products of the type
<3tjUrjtjiﬁrktk> with no time loop allowed. Thus all relative
time integrals factor and one is left with products of integrals
of the typeftatR(rj—rk,t) which vanish since the response  \We now consider the combined effects of the pinning dis-
function vanishes fot< 0 andt— + [35]. ThusF does not order and distribution of time scales. Because the pinning
correctF. However,F itself produces new terms such as  disorder can be defined in a purely static theqrging the
equilibrium Bolzmann partition function its renormaliza-
tion is unaffected by thé& term. However, the converse is
f i, Uy, (43 not correct. Due to the nonrenormalization fofin the ran-
rt dom friction model, we must consider only terms of order
FPAY, with g= 1. The leading nonvanishing terms correcting

1 2

C. Pinning disorder: distribution of barriers

F atO(A) are linear inF, and are indicated diagrammatically
f iﬂnl&t2 urtlil]rtzﬁt2 Urt,, (44)  inFigs. 3, 4. They are computed in detail in Appendix C but
iyt ! 2 one easily sees the structure of the result, thanks to the prop-

erty of shifting internal time derivative@ots in the figures
obtained by time gradient expansions, with nonvanishing coto the external ones, e.g., that the three graphs in Fig. 3 have
efficients[of the form ~ [ta;R(r; - 7,1)], as well as similar identical values.
terms with higher order time derivativéaote that similar There is a subtle distinction between the contributions in
terms containing also higher order spatial gradients are alsbig. 3 and those in Fig. 4. In particular, in the diagram of Fig.
generated, but we will not consider them as important herd, the pinning vertex suffers contractions between both of its
[36]). One can embed these new terms into a new functionindependent time variablgse., graphically both ends of the
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! malizations of thef term. Their sum, integrated in the mo-
—_— \L._ @ mentum shell, gives the following correction o
u SF[z] = - A" (OSA[dI(zF [2] + 222F"[2]).  (48)
Here theF’ andF” terms comes from the diagrams in Figs.
°\ F’ 4, 3, respectively. In agreement with E4.9) it can be re-
written as
° 4 ®) — ’ "
T L»— aFi[z] = (4 In ) (zF{[2] + 22°F][2]). (49
4 Note that the disputed diagrams in Fig. 3 do not contribute to
the mean relaxation time due to the second derivativg b
__,_°\ % that 7 is unambiguous. The RG equations for the connected
|~ momentsz™ of 5 are thereby obtained using E@1) as
pg (c) —\2n?-n
. L] 4 7]
\-— 7" ~ 778”’(:'> : (50)
. o
‘ It is more convenient and physical to introduce the ran-
dom barrierU=In %, and the barrier corresponding to the
< “N /;—" average relaxation tim&,=In7%,. Changing to the energy
variablev=In z, and lettingG,(v)=F,(¢") gives
FIG. 3. Graphs involving pinning disorder which correct the 5U,G|[U] =2G/[v] - G([v], (51

term proportionally to~".
i.e., a diffusion with drift equation. Some physical under-
double ling andthe sametime variable(dotted leg of the  standing ofG(v) can be obtained from the two extreme lim-
f-term vertex. The locality of the response function thereforets
implies that the two internal times of the pinning force cor- o
ne’, v— —®©,
G(v) ~ {

v—=InP(0), v— o>,

relator are constrained to be nearby, justifying a temporal
gradient expansion and hence giving a leading contribution
proportional toA”(0). In the diagrams of Fig. 3, by contrast,
the two times of the pinning vertex are contracted wdth ~ as can easily be found from E¢0), assuming a constant
ferentlegs of theF term. These diagrams therefore generateprobability density for small barriers OP(0) <. More
in fact more general terms involving”(u,—u,/) with free  generally, using Eq30) the diffusing and drifting “density”
integration overt andt’. If |u,—uy| is not extremely small G is related to the barrier probability distribution via
(within the boundary layr this is a small correction lacking
the singular temperature dependence. It is thus not clear at —_ J ~eUt
this stage whether or not the graphs in Fig. 3 should in fact Glvl In | dUP(U)e ' 3
be interpreted as renormalizations of théerm. . o

In fact, the true situation is more delicate, and will be Formally, the solution of Eq(S1) is given by

(52)

returned to in Sec. IV. For the moment, however, we will 1 (v =U, -w)?
shut our eyes to this complication, and gain some physical Gi(v) :fdw — exp[— —']GO(W),
insight by taking into account both sets of diagrams as renor- V8w, 8U,
(54
and inverting the results via Eq53) to obtain P;(U). A
simple approximation may be applied in the regime of large
° ™ U>U, andU,;> 1, in whichG,(v) <1. In this case, it is valid
\\ J° (and justifieda posteriori since the distribution of barriers
U+v
\Kz' become broadto replacee™ by (U< -v) and thus one
PRl gets thatP(U)= G/ (-U). This yields[via Eq. (54) or di-
. L7 N rectly differentiating Eq(51)]
\
N A Y
\\ P 1 U+U)?
/\ P(U)~ —— exp(— u) U=U,. (55
\8’7TU| 8Ul
FIG. 4. Graphs involving pinning disorder which correct the Note that this asymptotic form reproduces all cumulants
term proportionally toF’. nl(”):[exp(nu)]c~ex;{(2n2—n)U|] as expected.
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Equation(55) is clearly not exact. Indeed, a breakdown of
Eq. (55) is inevitable on physical grounds, since the mean/

typical barrier cannot be negative. It suggests a distribution ° °
of barriers with a width proportional tqU,, and hence a - 7
peaked distributiorisince the mean barrierU,). Neverthe- . .
less, it does represent a very broéd fact log-normal ‘\\ J
renormalized distribution of characteristic times While S

there is no reason to believe that such a log-normal tail is

exact, the true distribution of relaxation times will certainly ~ FIG. 5. Correction to thdiw)® term in the response function
be very broad, with significant consequences for the averag%?m?nglfrom the second momen® of the relaxation time
response functions. distribution.

For ?>0, however, the broad distribution of relaxation

times completely alters the situation. From the above equa-

The first consequences of this broad distribution occur injgng 77I(2)~ 77(()2>(a/;o)6 and hencepyl(z)>77,2 (the mere ex-

the variancer'® of the relaxation time, and hence @w")  onential prefactors are negligiblat largel. Thus the feed-

in the response function. We therefore examine more cargssck of 7? in D dominates the renormalization Bf, and at
fully the O(w?) terms in the dynamical action, but for the large| one finds

moment still neglecting the full functional dependence of o
these termgi.e., onu;—Uu,,). In the kinetic part of the action b AdAld‘2 o m 6 62
(representing relaxation times and their fluctuatjpmee in- ! 6, 7o o) (62

clude the following terms: _ . _ o o
Thus, allowing for fluctuations in relaxation times invali-
_ — o dates thewr, scaling form already at ordes?.
Sin = L (710001t + Dilln ] It is still possible, within the approximation scheme of the
present Section, to obtain an equation for the disorder aver-

(2) . .. . .
_n- 01, d, U 01 dy U, (56) aged response function. This is explored further in Appendix
. 17 7Ty T, E.

titp

One has in general, definifg")g=[; t"R(t)/ [; R(t):

D. Breakdown of 7y scaling

IV. DISTRIBUTION OF TIME SCALES: FULL STRUCTURE

(Dr= 7, (57) OF THE DYNAMICAL FIELD THEORY
) > _— We have established the mechanism for breakdown of the
()r—(Dr=7n"-2D. (58)  unphysicalwr, scaling regime and described the indications

of a broad distribution of timescales within the FRG. How-

response function contained only the two above tefgand ever, to properly determine this distribution a_nd its conse-
D), then causality require® to be positive(similar to an ~ duences, e.g., on the mean response function, requires a
inertial term) [37]. Since in general these are only trucation MUch more complete analysis. While we have unfortunately

of an infinite series of terms in power ob, the only con- SO far b_een unab_le to carry this program to co_mpletion, in
straint is causality, i.e., that all polesanlie on the same side this section we will detail the formal structure within which

of the real axis. These three couplings satisfy the followinghiS analysis must be carried out. In particular, we shall see
closed RG flow equations to first order in _that the dlstr|put!on of relaxation times and |t§ conseguences
is encoded within the boundary layéBL) regime already
4Dy =T'\D, - T\A 272 - AgA 27, (59)  present in the statics. An understanding of the equilibrium

dynamics is therefore contingent first upon an understanding
(60) of the static BL, and we first describe the rather complex

structure therein. Following this discussion, we show how
@ _ @ the BL regime recurs in dynamical theory, and show how it
am” =6lng, (61)  can be formulated to describe broad distributions and non-
trivial scaling of the moments of the relaxation time.

There is no generic constraint on the sigrDofif the inverse

an =T,

wherel';=-A7(0) ~ Be? and the correction t® from 72 is
the graph represented in Fig. 5.

For #?=0 the equations foD, and 7, which can be A. Statics thermal boundary layer
obtained, e.g., from Eq$A2), (A6) by expansion fo second |4 the appropriate limit the dynamical theory should re-
order iniw, are consistently solved with,~ A7/, in the  yroqce the results for the corresponding statics quantity. We
limit of large |, where 7=7,exdB(e?~1)/6], consistent can therefore benefit from the knowledge of the thermal
with the Taylor expansion of the putative scaling functionboundary layer in the statics. To do so let us review how the
g(y=iwm) given in (A9) based on the single time scale static disorder correlations are encoded in the dynamical for-
analysis(A9). malism.
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At equilibrium, the part of the dynamical action contain- The static problem being defined from the equilibrium
ing the static disorder correlations comprises those termBoltzmann measurgsee Eq.(6)], deals not with the distri-

with no explicit time derivatives, and reads bution of the random force but with that of the random po-
tential
I .
=5 ) g, el (Urt, = Un,) V(Up ) - V(U = (=)*Muy, .. ud &y, ... 1.
(65
1 0y 10 0, S (Upg, Upg,Upg ) =+ -
. rty Mty Hrtg rty Hrty Urtg . Sincef(u,r)=-g,V(u,r) one has
1'2'3

(63) A(u) =-R'(u), (66)

This form is easily understood as arising from the cumulants 513)(U1,U2,U3) = 9132355 (Uy, Uy, Us), (67)

of the pinning force. The relation was given for the second

cumulant in Eq(3) and for higher ones it reads and so on.

It is straighforward to derive the one loop FRG equation
C_ kel in the Wilson scheme for these cumulants using the dynami-
Flupry) = fUerd = (=) S, - w8, - r), cal formulation. They are conveniently expressed using res-
(64)  caled cumulants

with §2(u,u")=A(u-u’) as in Eq.(3). Due to statistical Sgk)[ual, ,uak]:Aé'kAf”"‘@"’)Sék)[ualAf, L Ug Af,
translational invariance S¥(uq, ... ,u)=S"(us+v, ... Uy
+v) and satisfy reflection symmetnyS¥(-uy, ..., —uy)
=(-)*sM(uy, ... ,uy. The cumulants higher than second are ;X)) = (¢~ 27 + zud) A(u) + T,A"(U) + 25,440,u,0)
generated by coarse graining, and are thus included here 5 5 5 ~

from the start. = A (u)? = A"(W[A(u) - A(0)], (68)

and read for the second and third cumulant

19|§(U1:U2aU3) =(-2+2-3+ §Ui¢9ui)~S(U1,U2'U3) + %Tﬂ[NSzoo(ULUz,Us) "'75()20(“1,“2,“3) +hé002(U1,U21U3)] - %41(0)
X[éo&ulyuza Us) +§020(u1,u2, Us) +§002(u1, U2,U3)] - %Z(Ul - Uz)héllo(ula Uz, Ug) — %Z"(Ul - ug)[éul, U, Ug)
- hé(% Up, Us)] - z_llz,(ul - Uz)[NSom(UL Up,Ug) — 'éloo(ub Uy, Ug) + hémo(ula Uy, Ug) + héloo(uli uy, Us)] , (69)

where we have denotﬁf):s and we hav%s_uppresseq ex- A(u) = A # (0) - T,f(T), (70)
plicitly the feedback of the fourth cumulasfg into the third

one. One can check that this gives exactly the derivatives o =~

(67) of the one loop FRG equations for the static correlators u=exu/T), (71
R and S® displayed in Eqs(6), (7) in Ref. [24]. These

relations(67) should indeed be preserved by RG at equilib—for U=0(1), Ty<e® and f an analytic function withf(x)
rium. ~|x| at largex to match the cusp of the zero temperature

As discussed in Ref{23] when all arguments of these solution. For higher cumulants the very unconventional TBL
functions are distinct and order one conventional scalingcaling implies that it is no longer legitimate to neglect the
holds. That is, at large scales for whith— 0, the functions feedback of higher cumulan(he nth cumulants gets a feed-
SX approach well-defined nonanalytic fixed point forms Pack from then andn+1 ones. Therefore, we are unable to
I Moreover. these can be naively organized in ead Fruncate and solve the hierarchy of FRG equations. Instead,

o 0t K ; . in Ref. [23] we argued for the consistency of a thermal
—d expansion in whict8¥" ~ €, k=3. Naively this would  poundary layer ansateTBLA), which for the force cumu-
alloxv the truncation of the hierarchy of FRG equations for|gnts reads
the S¥, neglecting feedback of the>p cumulants with an e (00 N
accuracy ofO(eP). However, the convergence to these values Wy, ..u) = fi+ (Y€ “Tisg Uy, ... Uy, keven,
is highly nonuniform as mentioned in Sec. Il since at non- b (e TPy, ... T, kodd,
zero temperature these functions remain analytia=. A 72)
detailed analysis of the static hierarchy of FRG equations
relating these cumulants revealed the existence of a thermalheres; are well defined functions of order one in the TBL
boundary layeTBL) of the form T~ 1. The set of(l-dependentconstants
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_&2p) ~ \2p fields atT=0). Each term in Eq(74) can be assigneth
fp=S70, ... 0k, 73 =3I 3= kpk. For organisational purposes it is convenient to
with f2:Z(o)/(}25)2, have the meaning of the linearized ran- rewrite the action of Eq(.74) in a schemati¢but transparent
dom force cumulants within the zero temperature Larkin denotation, first expanding in number of cumulants:
scription. As discussed in Ref23] the crucial difference

— N 2
with the naive dimensional reduction result, where ftieare S=0[K+2(d)]uy + S, (76)
unrenormalized, is that they get feedback from the TBL func- _
tions and acquire nontrivial asymptotic values. 3(s)=7s+ DS+ -, 77
The TBLA encodes a huge amount of physics—in par-
ticular, all the distributions of minima degeneracy respon- Sm:—%iﬂliﬁzslz— %i01i02i038123_ (78

sible for large thermal fluctuations in the droplet picture, as . h s=io. H h bscri 12 f diff
detailed in Ref[23]. For instance, averages such as &q. with s=lw. Here the subscripts 1, 2,., refer to different
can be estimated using the TBLA, the coefficientbeing in times being md_ependently_lntegrated over in the action at
principle determined by the functiors®). This already non- S&M€ space point (further integrated on The Sy 5, are

trivial structure must now be generalized to intrinsically dy- 118N ;unctlons %f thmﬁ’”}%’ o andtheir time denv;g\gfs.
namical quantities. We then expand each of these in increasing nu

time derivatives

B. Dynamical hierarchy of kinetic coefficients S12= A(ugp) + (Ug — Uy) G(Ugp) + UgUpA(ug,) + (Ui + U%)B(Ulz)

In a conventional dynamical renormalization group in the P
MSR formalism a suc)(/:ession of individual termg']s ars added + (0= U)Clugg) + -, 79
to the action corresponding to increasingly high frequency . .
kinetic coefficients, e.g., for a particle the Stokes drag, iner- 123~ S(Uy, g, Ug) + 5[ UgH Uy Up, Ug) + UpH (Ug; U, Uy)
tial mass,... . For the disordered elastic manifold, however, + UH(Usg; Uy, Up) | + Uy UpW(Uy, Uy Ug) + - -+ (80)
we recognize that these kinetic coefficients have a broad dis-
tribution characterized by an infinite set of cumulants and (81)
cross correlations, which moreover can be nontrivial func-
tions of displacement field differences. The latter dependencAs discussed above, each new term in E@9), (81) corre-
was neglected in the approximate treatment of Sec. Ill. Theponds to statistical properties of the random kinetic coeffi-
need for treating it was already indicated in the ambiguitiesients and forces in a renormalized equation of motion, in
in the diagrams of Fig. 3. Each of these cumulants and crogsarticular,
correlations appears as a distinct interactionctionin the . R i
MSR action. <o+ D(u,r)i+ g(u,r)u=va+f(ur) +g(u,ru+ ---

By symmetry(time translation and STS, statistical reflec- +{(r 1), (82)
tion, causality alone, the set of all such interactions contrib-
uting to the effective action at zero temperature can be writwith

ten as c
B D(u,r) =D, n(u,r)f(u’,r)
SEDIEDY iy, ey, =—GU-u)Sr-r), punpu ).
n=1 P:{pik} -ty =Alu-u’ -y
=A(u-u")a&r-r’), (83)
SUITRISEERTIN B} KCATH L (74 guNiW.r) =Bu-u)ar-r’), fundW.r) =Cu
e —u)ar-r), (84)

where pf=0 and from STS symmetnS(u,+u, ... ,u,+u)
=Suy, ... ,u,) are translationnally invariant, and statistical c_1 )

reflection implies the full action is also invariant under U T ) T(Uz 7o) f(UgiTa) = 3H(UL Uz U 8ry — 1) B2 = T,
(0,u)— (=0, -u). The random force correlators correspond (85)
to

SV(Ug, +.. Uy = SV (U, <. Uy, (75) Uy, 1) (U 1) (U Ty) = WU Upiup).  (86)

whereP=0 above indicates the function wig=0 for alli,  In the approximate treatment of Sec. Itj? hence corre-
k. Other terms correspond to intrinsically dynamical cumu-SPonds toA(u) approximated asA(0). Note that it is the
lants. small argument behavior oA(u) (and its higher cumulant

It is instructive to begin the characterization of such termsanalogs that is related to the physically interesting second
at T=0 by listing all possible forms in order of increasing (highep relaxation time moment;? ~(t)% (7™~ (t)").
numberm of time derivatives and order of cumulae., the  Hence these relaxation times are encoded within the BL re-
number of independent times which equals the number of gime of these functions. This was also apparent from the
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naive renormalization of by A”(0), also a BL quantity. We

will return to the problem of the dynamic BLs in |

G(u),A(u), ..., momentarily. = Z
Although it is convenient as above for the purpose ofE

enumeratingterms in the dynamical action to first separate

by cumulant indexh and then by number of time derivatives

m, conceptually we analyze them in the opposite scheme — v /

i.e., collecting all terms of a givem, and organizing these 0 = + yf + e T +
afterward in order ofh. This scheme is clearly convenient ; \

insofar as the first terhim=0) of each of theS;,..., corre-

sponds to thenth term of the static cumulant hierarchy, so FIG. 6. Compact notation for a generic vertexTatO.

that the set of terms witm=0 satisfies a closed hierarchy of

FRG equations independent of those witi>0. We now  ith n response fields anah time derivatives. The terry is
dfamonstrate diagrammatically that, at zero temperature, & the response function is the quadratic parShfwe note
similar property holds fom>0. In particular, all terms of R—lzquadsrln)] and the cumulants;™ are included ing.

any givenm will satisfy a clo§ed containing only terms with From the above discussion, neglecting rescaling terms, the
m’ <m. Thus, one may imagin@ream of?} solving the FRG structure of the FRG equations reads

equations up to levah, then using this solution to complete
a closed set of FRG equations for levet 1, and iteratively -
solving for higher and highem. , "

This closure relies on the rule of conservation of powers 5&? = Sﬂﬂ) + 2> S(r:r) n_+nzq'n :
of frequency, established in Sec. Ill. Recall that this occurs m’'=0n’=1
because aff =0, the correlation function vanishes, and all . Y > Sf_:,) g3’y
contractions take the form ofausal response functions. T Tmem - '
Thus no closed time loops can appear in any diagram. This
implies that internal time derivatives which appear in any (87)

diagram appear as factors of frequency of some external leg 1 i sraightforward to see that this series contains a finite

to which they are connected. In any case, this rule implie$, ;mper of terms for any givem, n. Let us suppose that an

that, since all terms in the action have=0, terms with  n joop term exists, such that each vertex making it uprhas
m’>m can never reduce their number of time derivatives by e integrations. Suppose of thelevertices,n, > 1 for N’
. n;

contractiqn with gnother vertex at=0, and hence cannot ¢ them andn,=1 for the remainingN-N'. Thenn=3" n
renormalizem vertices. This is true to all orders for diagrams , ' N ,
with any number of loops. The frequency conservation rule. N=N=N +2i=_1n,i_N_Ei71(ni_1)' Hence at mos'’<n.
implies in fact a more detailed result. If the quadratic termgVoW the remainingN—-N"=N-n vertices have only one
in 3(s) (7,D, ...) are regarded themselves as coupling conlime integration. Since there are no allowed local terms with-
stants[38] (with m=1,2,..), then each term in the FRG
equation for any quantity at leveh is a product of factors @)
for which the total frequency levéi.e., =m, for all termsi in
the productis exactlym. Thus a static quantitge.g.,A) can
renormalize a dynamic on@.g.,G, n) only in combination e T
(i.e., multiplied by another dynamic quantity, and so on. ®
One can also establish a set of rules to understand how
cumulants with differenh are connected in the FRG equa-
tions. At T=0, this process is highly constrained, since each
contraction involves one response function, which removes
oned, it is straightforward to count the possible connections.
We will restrict our attention to one loop diagrams, anticipat-
ing future nonperturbative exploration using the exact RG
[23,39, in which only these appedand in any case only
these are consistently treated in the Wilsonian scheme of this
papej. The counting is illustrated for such one loop dia-
grams in Figs. 6, 7. One readily sees that whievertices are
combined in this manner, the resulting vertex which is renor-

n+l

m’+m’'smn’+n"<n+2

malized in the effective action contains a total number of g
independent timegor 0 factorg n:Ei'\ilni—N, due to theN T
response functions appearing in the loop. FIG. 7. One loop diagrams which correct the effective action at

With these rules in mind, we can describe the structure of =0: the internal lines contain the full response function and the
the FRG hierarchy as far as the feeding of terms of a give@raphs are 1P irreducible. Grapd) is a “tadpole.” Graphgb) and
m, ninto otherm’,n’. We note symbolically bys; the terms  (c) (and higher ordejscorrect terms witm=1,2, 3,respectively.
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FIG. 8. Shown is the5 vertex (top image with no alphabetic
label) and diagrammatic corrections ta Graphs(a)—(d) are con-
tributions from tadpoles of th& vertex[note that(a) and(c) cancel FIG. 9. Corrections td.
by the same mechanism as dimensional reduction, anddhesn-

ishes upon integration by parts on internal lin€raph(e) is the . ~ _
contribution fromzA. an=[G'(0) - A"(0)]7, (90)

out time derivatives, these must each hawe=1, i.e., m - - _— e~ ——
=N-n. Turning this aroundN<m-+n, so that the series of 4G =(-2+€e- )G+ {ug,G - 2A"G+[A(0) - A]JG"
one loop diagrams terminates at at m@st+n)th order. ~ e ~
Clearly from Eq.(87), each order contains a finite number of —3A'G'-G(0)G-G'(0)A" + A'[2A7(0) + 24"]
terms, so that the one loop FRG equations are finite. +5,,40,0,u) + %[ﬁom(u 0,0) — 2Hg04(0,u,0)

1. Terms proportional to frequency m1l - ﬁloo(o,u,o)]. (91

We will now examine levem=1 andm=2 of the hierar-
chy. Form=1 we will restrict to study the FRG equation for Because of the above rescali(®9) no explicit 7 appear in

terms withn=2 for which we need terms up to=3: Eq. (92).
B 1 Sinceé’(O) appears on the same footing Zi’é(O)~ 1/'~I',
S = J 70Uy — f i, 1, (Upg = Upy, )G (Ur, = Ury,) in Eq.(90) itis natural to expect it to grow unboundedly with
rt rtyty scale in the same fashion. Indeed inspection of (Bd) re-
1 . veals thaG is fed by a term explicitly proportional tE”(O)
- _fr Wt i e g, H (U Ung U ) (88) which can consistently be balanced by B&0) term ap-

tatoty
pearing in the first line of the same equation. Therefore we
Th lizati T andG is d ined b are led to expect thas itself, similar toA, should exhibit a

e renormalization o7 andG is determined by a stan- yhorma| houndary layer and the effect of temperature will be

dard if cumbersome one loop calculation performed in th&ssential in understanding the structure properly. We will
Appendix F. The corresponding graphs are represented ifyne pack after taking a brief look at the=2 terms.
Figs. 8, 9. From dimensional analysis and the structural form

of the FRG equatioli87) we see that an andH as single
frequencym=1 terms will be fed byO(7A?) and O(7A%),
respectively. Hence, given the rapid growthmfvith scale, The m=2 terms, restricting tgn<2)-th order cumulant
we expect these functions to be at least growingyasith  (ead

scale. We thus defined rescaled functions

whereG(-u)=-G(u).

2. Terms proportional to square frequency a2

2-d 1
A~ - L na e
G(U) =7 IAd Gued), (89) St 2= frt iU DUy — Efrt t e 1 e[ Urt Urt A(Ur, = Ur,)
12
w212 + (U7, + UF)B(Un, = Un) + (i, = U, ClUg, = U]
Hi(ug,Up, Uz) = H'TH(ule‘g' e uge?), (92

. ) . ) _ The renormalization ob and of the function#, B, andC
in terms of which one finds the flow equatio#0) for » and  via a one loop calculation is performed in the appendixes. It
G(u): turns out to be convenient to define
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By(u) = B(u) - 3C'(u), (93)

PHYSICAL REVIEW E69, 061107(2004)

Let us close this section by noticing that all nontrivial
terms in the right-hand side of the above set of FRG equa-

which simplifies the equations, the physics being explainedions (8 functiong for G, A, B, and C cancel when one

below. We define rescaled quantities as follows:
D=AD, (94)
—d —d

A(u) = A—'/K(ue‘ﬁ'), By(u) = A—'Tsl(ue-f'),
Aq Aq

I—de{|~

C(ue?), (95)

C(u) =

2-2d (1
|

Wi(Uy, Uy, Ug) = 777 2 W(use ™, ue ™ uge™),

and one finds
aD =[-2-A"(0)]D - A(0) + C'(0)
- 772G (0) - A"(0)], (96)

together with the FRG coupled flow equations fafu),
B(u), andC(u) which read

aA=[-d+ fug, - 2A"(0) - 4A"JA - 4A'A'
+[A(0) - AJA" + 722G’ (0)G’ + 5G'2 - 4G'A"(0)
- 8G'A" + 2A"2 + 4GG" - 4A'G"], (97)

9By ={~d+ fud,— 3[A" + A"(0)]}B, + 3A"B,(0) — 4A'B}
+[A(0) - AIB, + A(O)A” + 72~ G' (0)G’ - G2
-GG" + 2(~3’Z”(0) + 6’(0)5” +G'A"+A'G
- A"(0)A"], (99)

4C=[-¢-d+ud,— A"(0) - 2A"]C + A’A(0) - A'C'(0)
~3A'C' +[A(0) - A ]S + 2DA/[A"(0) + A7)
+ 77~ 2G5 (0) + 43/ G (0) - 2GG’ + 24/ G
+2GA"(0) - 3A"A"(0) + 2GA” - 2A7A"]. (99)

From these equations we expect exponential growlﬁa,of

chooses
G(u)=A’(u), (100
A(u) = = 77A"(u), (101)
C=DA’(u), (102
B, =D3A"(u), (103
H(uy,Up,Ug) = 3S;00(Uy, Up, Us), (104
(U, Up, Ug) = = 3Sp10(Uy, Up, Ug), (105

and furthermore the flow of the kinetic coefficients simplify
to

dn=0, (106

4D =0. (107)

This remarkable property, which serves as a useful check on
the RG equations, can be understood in terms of a simple
integrable model which is studied in the Appendix\&hich

has very different physics from the one studied here

C. Dynamical thermal boundary layer
1. Dynamical action at non-zero temperature and FDT

At T>0 two new effects must be taken into account not
present aff=0. First, in addition to the kinetic coefficients
studied above one must take into account a variety of ther-
mal noise terms. In the dynamical action this corresponds to
terms with two or mordl field having the same time argu-
ment. Second, new thermal contractions are possible using
the nonzero correlation functiguu) of the Gaussian theory.
We first focus on the former, and discuss the additional con-
tractions at the end of this subsubsection. The action takes
the general form

s:§ >

N N n)
U, ~ |urtn$,R
n=1 p=(ply, R={rly ~ M1t

4+ N

A B, C at least as fast a®® due to the feeding terms. We
expect from the considerations of Sec. Il that the growth is
actually faster. Indeed considering thdlow equation at the

origin gives 4A(0)=-6A"(0)A(0) keeping the largest terms with p?=0 and ther=0 are integers. Th&_'\, are transla-
of order 11T, and neglecting feeding terms. Note the similar-tionnally invariant functions. Compared to thie=0 action it
ity to the result of Sec. Ill. While we expect this qualitative has additional powers di; and possibly their time deriva-
behavior, the precise nature of the growth is more subtle dutives (such vertices are shown in Fig. YLO'here is a tem-
to the fact that at nonzero temperaté@) no longer satis- perature homogeneity degree>, > r!‘ such that the term is
fies a closed equation. We will discuss this in more details~T®. The standard thermal noise corresponds SﬁiOR
below. =—7T, with rk=286,.

X (U, - e )T TT (it ) (dug W, (108)

k=0 i=1
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The relation to FDT is apparent since, performing the trans-

- formation in the path integral defining the response function
i = z one finds
i th—tl = <iat1ut2>1 (113
T { < T —/in N Ctl‘tz
o) = : + \,‘_A_._‘f + S"r- ------- +.. —<(|U—t1 - U—tl)U—t2> = Rtl—t2 + T (114

i.e., the FDT relation for two point functions. The same is
FIG. 10. Compact notation for a generic vertexTat 0. obtained from considering the action of the symméty2)
on a general forn{i.e., nonlocal in timg for the quadratic
part of the effective action functionf2,50.
| We now discuss more precisely the conditions on the
oundary terms which relate this symmetry to the FDT. This
Is simplest to see first in the context of the theory before

In order to maintain the fluctuation dissipation theorem
(FDT) there are relations between these vertices. A usef
symmetry which constrains the allowed form of these term

is . . . :
averaging over disorder. Let us define the Ito path integral
il]rt — il:lr,—t - )\rUry_t, (109) u(ty)=us
Z(ug,te;up,t) = DUDue™, (115
U(ti):Ui
Ut = Uy s (110
[we meanu_=u’(~t)]. For actions with no explicit time de- f duZ(up teut) = 1, (116)
pendence, such as considered here, one can then later make a

change of variables— -t in integrals over times. We apply
this to the bare actio(il1), (12). Consider first the infinitesi-
mal variation of the interaction term

the (normalized conditional probability to find the system in
stateu; at timet; given that it is in statey; at timet;. HereS,
is the MSR dynamical action in a given disorder realization.

By construction the Boltzmann measure is the stationary dis-
58S = -f )\J il U AUy, — Uy.) + O(N2) tribution for this Z(us,t;;u;,t;) regarded as an evolution op-
rodg, 22 erator
- f )\rJ i, 3R (Un, = Ug,) + O(N?), dur Z(up, ty;uy, ty) e THUHWIT = 1 (117
r tl't2
(111

Note that if under the transformation abo$%g— S,+ S,
wheredS,=8S,[u;, U¢] is a function only ofu; andu; (bound-

singA(u)=-R’(u), a consequence of potentiality. This inte-
using A(u W au P aty. 1his | ary ternm one has

grates to a boundary term which is a function only of the
coordinatesu and corresponds to the energy difference be- Z(ug te U, t) = Z(Us tug, ) e %Sy, (118
tween the initial and final timegsee below. Hence the in-

teraction term is invariant for an arbitraty-dependent),.  sincet is changed to t-and thus boundary timet and t;
Unfortunately, this large symmetry is quadratically brokenmust be interchanged. Interchangingandu; in Eg. (117)
by Eq.(11). First, the variation of the elastic term vanishesand using Eq.(118) the normalization conditior(116) is
(up to boundary termsonly for spatially constani,=x.  found to hold only if

Thus the full action forp=0 has a continuous globalsym- 1

metry (109). This can be used, e.g., to put constraints on the 8S/Lui,uf] = =[H(u,) = H(uy)]. (119
terms appearing in the FRG equation order by ordefpin T ! '

[41]. More importantly, the remaining terms in the action areit on the other handsS, depends also on the time deriva-
only invariant under a discrete transformation, specificallytives at the boundary, then the FDT may or may not be

Eq. (109, with satisfied depending on the precise nature of the boundary
1 terms[41].
=V
A= T (112 Upon averaging over disordep**> =% the shiftsS

obtained after transformation on the disorder averaged MSR
Note that they are, howevegxactlyinvariant(no boundary action. It is readily seen that for the bare actiéB,is a sum
term). of a single time integral cross correlation boundary téamd
Having established the invariance of the bare model undepne response fiejdand a term with no time integral repre-
the symmetry(112) we know that it should be preserved senting the second cumulant of the random porteMia).
under renormalization. We must thus understand the cons@4ore generally, if one performs the transformatid®9) on
quences of this symmetry for a more general effective actionthe coarse grained model, one must obtaiéSavhich is a
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sum of boundary terms, each containing less response fields (@ Q b P
than time integrals. Thath cumulant of the renormalized [
static disorder can then be retrieved from the corresponding O_’

boundary term with no time integral and T/ factor.

We are now prepared to discuss one how can construct the ©
effective action at finite temperature taking into account the
constraints from the FDT. It is useful to note that from the

fundamental fieldsG and u two linear combinations trans- ©
form simply under the symmetr§i12) O j
0— -1, (120 e T
Y =2Til-u— 2TiG-u. (121

FIG. 11. One loop diagrams which correct the effective action at
Terms in the effective action which are exactly invaridre., T>0 (in addition tq the one fol =0): the interqal lines contain the
whose variation do not produce any boundary tgrmsist full response function and the graphs are 1P wreduc{b}e_(b) The
involve 0 only in the combination Ziti—i. Examples will be tadpoles using the full correlatlor_w f_unctlcﬁt‘ne only possmle ones
constructed below. as(d) _should not be cou_nted asitis a _two loop dl_ag]a(n) The

It is clear from these considerations that nonZErerms ~ Jonc ¢ NeW one lO.Op diagram at-0 V\.”th two vertices(e) One
can have time derivatives replaced By. Therefore it is example of expanding the full correlation.
natural to group terms which former{at T=0) were orga-
nized by the frequency powen by the more general index €r,Her't))y =2UunTst-t')or-r"). (125

M=Ng—n+m, (1220  The fact thatG(u) is a total derivative then follows simply

from its interpretation as a cross cumulantzgti,r) and the
whereN; is the number ofi fields appearing in the term and conservative random pinning forééu,r). Based on this rea-
n the number of independent times, as before. Terms with 8oning it is clear that the functid®(u) andC(u) must also be

given M, n can mix under the FDT transformati@hl2). total derivatives.
Let us start withM=1 andn=2. The only possible com-  Note that the finitél partner of theG term is generated in
bination of the above invariants is, using symbolic notationsparallel to it from graphs of the fornee) in Fig. 11. One
as above: easily checks that it corrects the temperature ternd syl
(2Titl, - Uy)2 - i where 67/_ cor_responds to_ the correcti@@0) from G’(0) so
22 1 Y LG G(Uy = Uy + (L 2 as to maintain FDT relation.
) iU,G(up = up) +( ) .
’ 8T Let us now examine the termd=2 andn=2. One can
1 write the possible terms in a way which makes apparent the
=- Eiﬁliﬁz[(ul - Uy) — T(i0;, —i0,)1G(u; — uy), invariants:

(123 2= 1[0F = (2Tidy — Uy)?] [U5 ~ (2Til, — Uz)ZJA(u )
2~ 1 2/

. . ' 2 AT 4T

recovering the zero temperatueeterm together with a non-

zeroT partner term. Note that at time we have used the (126)

invariant combinationY?, taking care to remove the piece

proportional toli? since there must be at least one response  (2Tidl;, — u;)u2 — (2Ti0; — Uy)2.
1 1 Y1 1 1

field at every time. This is not possible whenever there is an * aT i0,B1 (U~ Up) + (1 2)
odd total number of fieldsi and {i at any particular time.
Thus theil, above cannot be embedded in a term exactly (127
invariant. HenceG(u) must be a total derivative and the
above term gives a nonvanishing boundary variation under (2Til, = U)US . C'(ug — Up)
the transformatior(112). This term can also be understood - AT U2 2
before disorder averaging. It corresponds to replacing the L
naive zeroT dynamical termy(u, r)iGit corresponding to the _ (2Tiag - Ul)Uliazc(ul _u)+(1e2), (129
damping in Eq(82) by the invariant combination 4T
(U2 - (2Tidy, - U)?] in a way such that unwanted terrgwith no G field associated
fr . (U, T) aT : (1249 to a time cancel explicitly, apart from the last terms where

they combine to gives rise to a boundary te%ml[qu(u1
Note that expanding out the factor in this term demonstratesu,)]. Accordingly, the B has been splitted intdB(u)
that includingu dependence in the damping coefficient has=B;(u)+C’(u)/2. The functionB;(u) must be a total deriva-
given rise to a white thermal noise whidiior D(u,r) tive (see aboveand its variation yields a boundary term.
=g(u,r)=0] hasu-dependent variance However, the invariance of the part cubic in the field in the
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B, term is exact, which can be traced to an exactly invariantight-hand side of Eq91) the termTG"(u), originating from
term in the unaveraged dynamical action the simple tadpole contraction of ti@ vertex.

2Ti0, — U U2 = (2Til, - Uy,)3 From examination of this equation we expect thBu)
( rt rt) rt ( rt rt) g(Urt,r). (129)

aT supports a thermal boundary layer form fmbrl',/a
Expanding all terms above one can write explicitly ~ - [ €
G(u=exg| = | (132
T

T . o
Sﬁrz)z = gr2:)0,2+ E[(iﬁl)ziﬁzuz + (i) 40, 0y JA Uy = uy)
with g(0)=0, g(x) an analytic function ax=0, odd and posi-

T tive for x>0. It should match the fixed point form outside
= — (i0)(i02)*Auy = up) (130 weap ~
2 the boundary layer. Far~O(1) andT,<e we expectA(u),
G(u)<A"(0)~G'(0)~&%¢?/T,. Thus in the outer region
+ §T[(i01)2i0201+ (i0)2i0,0,1B4(u; = uy) only three out of the several terms involviigand G are
2 non-negligible. For now we neglect feeding from third cu-
— T2[(i01y) 30 + 104 (i0,) 3B (Uy — Uy). (137) ~ Mulants functionsS and H, we return to them below. The

. o fixed point forG(u) outside the TBL is then trivially
Note thatC does not give any bulk contribution at nonzero
temperature. The FDT constraint only requires some bound- o 23,,(0) 5

Gu=|——-1|A"(u). (133

ary noise term forC. This is becaus€ alone, withA=B; =
G'(0)

=0 corresponds to a conservative dynamis.

These considerations show that to the order studied the _
T>0 dynamical action is fully specified by thE=0 action  Since at small argumem’'” (u)=—¢Y it follows that g(x)
and the FDT constraints. Thus we do not need to introduce at,y, =1-2A"(0)/G’(0) a constant, for larger. Using the
this stage any new operator associated to filite ~, .

Having established that we are working with an appropri-1 BL form to evaluateG’(0) yields
ate action(and hence have not neglected any pertinent cou- 5
pling constants/functionswe turn briefly to the effects of Oro=1+——. (134
additional thermal contractions upon the FRG equations. Up g'(0)
to this point, the only §u~ch contractions we have included are T analyze the boundary layer equation, we use the form
the “diffusion” terms(T,A", etc) in the FRG equations for 70 tor A and similar forms for the third cumulant functions
each coupling function. It appears natural to neglect mosé for S and
effects of temperature since it is an irrelevant variable unde 72) for San
the FRG, while clearly these diffusion terms are crucial,

since they are necessary to stabilize the boundary layer. H(uy, Uz, Ug) = (0)°h(Tiy, T, Ts), (139
Within this treatment, the zero temperature rule of conserva-

tion of powers of frequency still holds. More generally, how- _ &w

ever, one can a priori perform thermal contractions that feed u=-—-. (136)
downward(i.e., reduce the number of time derivatiy@sthe T

frequency hierarchy, in particular by thermally contracting . .
fields containing time derivatives. For some simple such con:rhe TBL equation fog(x) is then found to be

tractions, a preliminary calculation shows that a cancellation, _ ., ver . " - "
in fact occurs amongst the different “partners” required by 0=2f"g+3g't" +¢'(0)(f" = g) + g"(1 + 1) + 21'[f"(0) + ']
the FDT, eliminating the unwanted mixing. We do not have, (137
however, a general argument for such a mechanism of can-
cellation. Due to the complications of such a more general _ ¢ 5 0T + 2[ha(T.0.0) = 2he(0.T.0) = hind0 Ti. 0
analysis, we will, however, proceed assuming this is gener- 110 0.0) + 3 h1(.0,0 001(0., 0) = y0d(0.U, O)1,
ally true. We comment briefly further on this in the conclu- (138
sion.
wheres(uy, Uy, Ug) =, (uy, Up, Ug), all these terms being mul-
tiplied by £3x/T, while the terms originating from rescaling

D. Dynamical boundary layer analysis: terms associated with  are proportional ta. This form will thus hold at scales such
averaged relaxation time thatrl] <g?

Having established that to this order no new terms arise For given functionsf,s,h this equation is an eigenvalue
due to temperature we now attempt to study the structure gfroblem for determiningy’(0). This can be seen since for
the thermal boundary layer in the operators studied so fatarge x the linear problem has one exponentially growing
We consider the levah=1 in some detail. We add the effect solution, in addition to the one matching the outer solution
of temperature to lowest naive order which is to add to thewhich converges to a constant. Thyg/§0) must be tuned to

061107-17



L. BALENTS AND P. LE DOUSSAL PHYSICAL REVIEW E69, 061107(2004)

select that solution. We illustrate this behavior in the ap-case already the leading effect of enhancement due to the
proximation of neglecting all third cumulant functions. Then divergence szfr(o) is nontrivial. Thus we will focus on it
we recall thatf satisfies here primarily ignoring secondary effects of cross correla-
F24f(1+f)=1, (139) tions between the random friction coefficient and the random
o force. In general these cross correlation effects enter the flow
whose solution ig(x)=v1+x?-1. Since, as discussed earlier of A throughG, H, andW defined in Eq(81). Terms involv-
G is a total derivative, it is possible to integrate the boundarjing H and W have already been dropped in E§7) for A.
layer equation once, and definigg-—f’ +y' one obtains We will initially keep terms involvingG in Eq. (97) but will
, L, , drop them at a later stage of the analysis. It is not clear at this
(L +Hy'+2f"y —g'(0)y+(2f - D[1+g'(0)]=0, stage whether keeping these terms without simultaneously
with ¥(0)=7'(0)=0. One interesting solution but unrelated including the ones dge thl and W would be consistent.
to the physics of interest here ig=0, g’(0)=-1, i.e., g We then note thafA(u) satisfies a closed equation once

=—f". It corresponds to an integrable set of models with aG(y) is known. We first consider the nature of its solution for

single exponential relaxation, which exactly obey the full ;1 gutside the TBL. Doing so one notes the presence of

FRG equations to one loop, and is studied in Appendix. A . ~, ~, .
shooting procedure gives a solutiag(x) satisfying the several large terms proportional &'(0), G'(0). Balancing

proper boundary conditions wity (0)=2.646+0.001. these large terms, we obtain the solution outside the TBL:
Thus we find that the growth of; is determined by

— &P B AWU) ~ 779G = =7 gZA, (142
Am= T [F'(0)+g'(0)]n (140 whereg,. was defined above. Note that, as was the casé for
o the convergence is very rapid due to the homogeneous part
yielding dA=-2G'(0)A. The important feature of this result is that
B Bel A(u) is of order7? outside the TBL.
n~ exp(a(l)— ) (141 We are going to search for a TBL solution férwhich
0 grows faster:
Clearly «(1)=3.646 is a nontrivial number. 5 [ =
~ . €X°, [ €xu
A() = n—hl = |, (143
E. Terms associated with second moment of relaxation time T T

We now turn to the consideration of terms witiF2. As
emphasized in Sec. Il the principal quantities of interest ar
the cumulants of the friction, the second one being embodie
in A(u). The quantitiesB, and C also appear at this order,
complicating the analysis. Since these embody somewhat ., , " " . o
different physics we will focus initially or\(u) which fortu- (= \F'(0) +'(0)]+ 2(0) + 4"} + (L + D + 41" = 0.
nately satisfies equatiai®7) which is independent d8, and (144
C.

We add the effect of temperature to lowest naive ordeDue to the presumed faster growth/évfthan%,2 (A>2) the
which is to add to the right-hand side of Eq97)—99) the  feeding terms in Eq(97) are negligible and have been

terms TA"(u), 'NFNB’l’(u), TC"(u), respectively. These originate dropped. As discussed above, since our principal interest is

ith A>2. In order to match the above solution outside the
egBL one should havé(w«)=0. The TBL equation foh then
reads

from the simple tadpole contractions. to compare the growth of the second relaxation moment pa-
rametrized byA(0) relative to the growth of the meamn, to
1. Second moment of relaxation time (&) be consistent we drop the analogous renormalization loy
In Sec. Ill we pointed out the rapid divergence of the G'(0), i.e., se’(0)=0 in Eq.(144. Numerical solution then
moments of the frictionrelaxation tim¢ 7, 7?=A(0),...  Yields

driven by the low-temperature divergenceZd‘l(O). In doing

so we neglected all functional dependeipsgch asA(u)]. In

the previous subsection we reconsidered the growth of theq analysis is thus consistent since we fiag 2. To the

average frictiory, which clearly does not itself has any func- orqer considered we therefore have

tional dependence. Instead the deviations of its growth from

the prediction of S~ec. I aris_e from a secondary mechanism P~ LN~ (146)

of the feedback o065’ (0) into ». Physically it corresponds to

the cross correlatios of the friction 5(u,r) with the ran-  This gives, in the present approximatieri2)/«(1)=2.64.

dom forcef(u,r) producing an increased growth gf As seen in the previous subsection we expect lad) and
We would now like to reconsider the growth of the seconda(1) to be both increased by inclusion of the effect of cross-

momentA(0) = %'? including functional dependence. In this correlations of friction and random force.

\ =2.64. (145)
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2. Growth of other Gw?) kinetic coefficients DB,C

Due to the feedback o&(0) into D we expectD to grow
at least as fast ag. In the simplest scenario, indeed, af

PHYSICAL REVIEW E 69, 061107(2004)

Finally, we discuss the growth (~Bl. Since it is fed by

A0), it must grow at least as fast a8, so all other feeding
terms on the last line of Eq98) are certainly negligible.

quantities would scale the same in the same manner. HOV\Remarkamy even in the presence of the therﬂhﬁ{ term
ever, we see no general reason why this need be the casg, asymptoticallyfor largel) exact solution can be found. In

Indeed, examination dB; and C using the same truncation
scheme as foA, shows that they grow faster. We sketch this

analysis here. Consider firEI(u), which also feeds into the
inertial massD. We assume(?~§“, with u>N\>2. With
such growth ofE:, the feedback of:’(O) into D will over-
whelm all other feeding terms, and we expé@t?‘a with
D scale independent. It is then natural to defiEi(au)
:—Bau). Equation(96) becomes

4D ={-2+u[G'(0-2"(0]-C'(0}}D. (147
Thus to leading order in ﬁZ one needs
C(0) = u[G'(0) - A"(0)]. (148

Using the above form§ satisfies

dC={2-d+ {3,- A"(0) + u[A"(0) - G'(0)] - 2A"}C
+T,C"~A'C'(0) - 3A'C’ +[A(0) - A]C" - 2A"A"(0)
- 2A'A", (149

to leading order, i.e., dropping termsz?™*,7*™#, and ne-

glecting feedback from higher cumulants as before. A<Xor

andA, the outer solution fou_~ 0(1) is readily found equat-
ing the large termSvZ”(O)+C’(O)~1/T|:

o C'(0) + 2A"(0)

— —~—A'(u) u~O(1). (150
(u=1DA"(0) — uG'(0)

As before, for small we make a TBL ansatz,
Clu)= xc(exulT), (151
which yields an equation very similar to E.38) for g(x):

(L+6)¢"+ 360" +{F(0) - u["(0) +g'(0)] + 2f"}c
- f'[2f"(0) — ¢’ (0) + 2f"] = 0. (152

We require, to match Eq150), thatc goes at a constant at

large argument, and(0)=0 sincec is an odd function. Fur-
thermore, from Eq(148), we havec’ (0)=-u[f"(0)+g’(0)].
This formulates an eigenvalue problem fer As above, to
solve, we use th€approximatg form for f(x) in Eq. (139
and, for consistency as before g£t0)=0. A shooting pro-
cedure giveu=3.377, indeed greater thanas required for

consistency. In summary we find the growth of the kinetic

coefficients

C(u) ~D ~ 7% (153)

particular, one finds that the homogene(ju;Bl) part of the

B, equation has an exact eigenfunction which is just

Bl(u,l)=El(I), a constant independent of This turns out to
be the most unstable eigenfunction, with eigenvaluk -

—33”(0). The exponential growth of this unstable eigenfunc-
tion is faster than that o&(0), and hence dominates the flow
at large scales. Hence, writing this relative in termszpf
[neglecting theg’(0) renormalization ofy as beforg one
finds

By(u) =By(0)7. (154)

V. CONCLUSION

We have through a series of successively better approxi-
mations arrived at a description of the growth of the mo-
ments of relaxation timesfriction coefficienj encoded as
eigenvalues of functional FRG equations. This final stage of
analysis was carried out only for the mean and variance—the
extension to higher moments is a formidable technical chal-
lenge. Nevertheless, already at this level we have observed
how these functional eigenvalue problems provide a mecha-
nism for describing a broad but nontrivi@le., not log nor-
mal) distribution of time scales. This is at variance with nu-
merous other existing examples of systems exhibiting
simpler log-normal tails which can be obtained from simpler
nonlinear sigma model diagrammatic calculations, such as in
disordered conductorfbl]. A similar log-normal tail was
indeed obtained in Sec. Ill from an approximate truncation
of the FRG equation. A rather strong physical difference
from the aforementioned quantum diffusion problem is the
rapid exponential scale dependence of the relaxation times
for 6> 0, very different from the logarithmic dependence of
two-dimensional weak localization corrections. It is an open
question whether some less trivial distribution might arise at
the metal-insulator transition id>2 and whether similar
functional renormalization ideas might be useful in this con-
text.

Many outstanding issues and extensions remain. Of these,
the most fundamental are germane to both the dynamics and
the statics[23,24. In particular the very basic problem of
perturbative control of the theoiynost interestingly in the
expansiol remains unsolved. This question, and the associ-
ated matching problem of relating, e.g., random force quan-
tities such as thd, in Eq. (72) defined deep within the
boundary layer ati=0 to the zero-temperature ones occur-
ring far outside fou~ O(1) are better addressed in the sim-
pler context of the statics. We will refrain from commenting
further upon them here.

Of the problems specific to the dynamics, perhaps most
important is a systematic treatment of all thermal terms in
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the FRG. We have begun this program by classifying all B 4 , t : ,
operators associated with “thermal noises” in the effective AR (L") == TIAJ| Ry (t,t) = 5t,t'f dt'Ry () |,
action(Sec. IV C J consistent with the FDT. However, up to t

this point we have included the effects of nonzero tempera- (A2)

ture only throug_h the leading “diffugion” terrr_Q§|A”, etc_) in wheret; is an initial time at which the system is prepared in
the FRG equations for each coupling function. As dlscussegome as yet unspecified stater distribution of states

in Sec. IV C 1, while this assumption is natural, we do not atEquation(AZ) is obtained formally by computing the correc-
" . . ) Sion to the (inversg response function upon integrating out
of additional thermal contractions thus remains an importanf o odes in the shell. and using definitiqis) and (21)

issue for further myesﬂgapqn. . . . We perform this integration perturbatively in (to first or-
Once these basic remaining issues in the FRG formulatloaer) which gives the lowest order term in

are resolved, the present methods offer the opportunity to At the end we want the true response functiyt,t’). It

explore numerous physical problems. Obviously, equilibriun\NiII be obtained by integrating the flow frof=0 with the
response and correlation functions are of considerable inte[—

est. Perhaps the approximate techniques of Se¢aridl Ap- hitial condition
pendix B may have an extension to the full functional de- " — o G2t—t) s _ 4
scription. It will also be valuable to reinvestigate the Ri=o(tt') =€ o=t (A3)
response to a uniform applied force in the creep redi®®  getiing7,=1 for convenience, up to the scdiesuch that

in light of the full dynamical structure of the thermal bound- Ae=q'"

ary layer exposed here. Applications of these ideas to non-

equilibrium response and gging is also tantalizing. Similar Ry(t,t) = Ry j=in(arg (L, t). (A4)
approaches should be applicable to quantum problems in the - .

Keldysh formalism. These and other applications of the This amounts to neglect contributions coming from the
present formulation certainly provide a broad scope for fumodesk<g, as is usually done in the RG. These are exam-

ture progress in understanding glassy dynamics. ined below.
Although the initial condition in Eq.(A3) is time-
ACKNOWLEDGMENTS translationally invariantTTI), the solution of the RG equa-

tion does not in general remain so, due to the presence of the
L.B. was supported by NSF Grant No. DMR-9985255, initial time t;. This leads to the aging properties to be dis-
and the Sloan and Packard foundations. Both L.B. and P.L.Dcussed in Appendix B. The TTI regime is recovered in the
were supported by the NSF-CNRS program through NSHimit t;— o (for large but fixed finite size systerwhere one
Grant No. INT-0089835, and CNRS Project No. 10674. can setR(t,t")=R.(t-t’). Then Eq.(A2) can be Fourier
transformed int—t’, R(iw)=[oR(t)e“ (i.e., Laplace
APPENDIX A: SINGLE TIME SCALE transformed withs=iw) to obtain
CALCULATIONS—EQUILIBRIUM

Rl(iw) =iw+k+3(iw), (A5)
1. Analytical results for the equilibrium response function
. ~ o 1 1
It is interesting to observe how the twautative scaling dSi(iow) = B ”(. > — - >
regimes described in Sec. Il arise in a detailed calculation of lo+k™+Zlio) K +24(0)
the mean response function. To do so, we develop an FRG (AB)

scheme to calculate directly the response function at arbitrar‘),(lh h defined a “self Y- ith initial
, k within the scaling regimes described above. It is neces?' €€ We have ‘E Ined a 'se .-energﬁk(m) with-Initia
sary to follow the flow of the full wave vector and frequency €ONdition %cy(i©)=0. To obtain Eq. (A6) one writes

H In(A/K —1/: .
dependence of the “kinetic” part of the MSR action. We Sk(i®)=/¢""dR,}(iw), uses the Fourier tranform of Eq.

therefore generalize the form in E¢L1) to (A2) and differentiate with respect to(we set from now on
A=1). One can check that consistenty(0)=0, as re-
A ol _ PN quested by the statistical tilt symmetry, which we use from
— r¢r r¢! T H
Sl Jr”t/ Wre(R e et = 77 ert(lu“)(lu“)' now on. Apart from special cas¢43], Eq. (A6) does not

(A1) admit analytical solution and we now analyze the various
regimes of interest.

where, in a slight abuse of notation, we have denoted the From Eg.(A6) one first finds the small behavior of

quadratic MSR kernel bR™L. Using Eq.(Al1), we extend the R *(iw) as

FRG analysis leading to E@15) to derive an RG equation

for the response function. As before, the strategy is to inte- R(iw) =k +iwn+ O(?), (A7)

grate out spatial Fourier modés> k> Ae™, but now keep- _

ing the explicit time dependence. At this stage, we wik  where 7, satisfiesgy=-Bk 1%, which yields 7.=k?7,

assume time-translational invariance, though we will specialt.e., one recovers as expected the single characteristic time

ize to this at a later stage. The FRG equatioanJr is scaler, given by Eq.(25).
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To analyze further the higher order termsiin from Eq.
(A6), we first consider the scaling regine, k<1 with y
=iwr fixed (which impliesiw<k?). Making the scaling an-
satz

S (iw) =Kg(y),

in Eq. (A6) gives the closed differential equatigny’ =g/ (1
+0), which has the implicit solutiofitaking into account the
behavior of2, for iw—0 from Eq.(A6)]

(A8)

gef=y. (A9)

Equations(A8), (A9) correspond to ther scaling limit of
Sec. II.

Equation(A8) is valid for finitey. As y— o, we enter the
logarithmic (X scaling limify scaling regime, in which the
scaling variablex=K[In(1/iw)/B]Y¢ is fixed andiw, k2<1.
Sinceg(y) — e in this limit, the first term on the right-hand
side of Eq.(A6) can be neglected, leading to the ansatz

3 (iw) = BKEH(X), (A10)

with (2-6)f+xf’'=-1 from Eq.(A6) which determines the
form of the scaling functiorf(x) as

2_
w5 (5

and the constamt,=(1/6)"? is determined by matching to
Eq. (A8). This regimes exists only for

(A11)

k < xJIn(Lliw)/ 8], (A12)

and thus corresponds to the limit of small wave vectors at

fixed w, or to relaxation times < 7 (7~ 5%V’ for x<x,).
Whenx— X one crosses over to the regime.

We can check that these results merge smoothly with th

result directly obtained at the upper critical dimensibrd.
There the equation fat,(iw) becomes

a3 (i0) =T k ( 1 _l)
i _’B[In(llk)]z iw+k2+3(iw) k)

(A13)

PHYSICAL REVIEW E 69, 061107(2004)

1 (= Y
Q(y)—% ey G

(A16)

While we have not performed a complete analysis of the
integral in Eq.(A16), the large time behavior can be ex-
tracted[44]. For > 1, the integral is dominated by the vi-
cinity of the branch point on the real negative axisyat
=-1/e, leading to

1 <t>1/2 p[ t}
R(t) ~ | — expl——|, t> 7. Al7
K(t) @\ on . (A17)

In the logarithmic scaling regime, we cannot simply in-
vert the Fourier space result in EGAL10), as it does not
extend over the entire frequency interval. Instead, we return
to the defining RG equation fcR;l(t), Eq. (A2). By invert-
ing this formal equation, and again integrating down to scale
k, we obtain an equation fdR(t) directly:

HR(t) = — 2kRexRy — EW_'?( Ry Rk Ry

= RexRy Rk(t’)), (A18)

tr>0
where #_ denotes a convolution. Note that, aside from the
momentum dependence of the prefactors and the absence of
derivative terms, Eq(A18) bears a formal similarity to the
mode-coupling equations of mean field models. In order to
match the scaling expected from the above logarithmic fre-
quency regime, we make the ansatz

%F{Xz%kﬁlnt] (A19)
t(ln t)2—2/0182/(~) B

gvith F[0] a constant. Inserting this in EGA18), it is per-
missible to drop the first two terms in the logarthmic scaling
regime, and moreover to approxima;fé)dt’R(t—t’)R(t’)
~2R(t) [{dt'R(t"). This yields

Ri(t) ~

X
OXF'[X] = 2F[X] f dzz?20F[7]. (A20)
0

The solution is

which yields the same two scaling regimes, the first one with

o~k 2exp{BI[2k¥(In(1/K))2]} and the same scaling func-

tion g(y) (A9) and the second one reading

B In(1/k)
E(k) - -1l+2——m
In(l/k)< IN[In(1/iw)/B]

) . (Al4)

We now turn to the calculation of the response function in

the time domain. Consider first the regivet/ 7, fixed and
t—o, k<1. Inverse Laplace-Fourier transforming E&5)
and using Eq(24) gives the scaling form

R(D =500, (A15)
Tk

with

dh

+o0 1
f '—ﬁ:_<_)ln(X/X*)’
(X200 (2 — )~ + 46€ 0

(A21)

whereX” =1/6 is the boundary of the regime, at whiétix)
diverges, signaling the onset of a regime of faster relaxation
onto the regimé).

Having computed the response functiggt) in the equi-
librium TTI regime, we also obtain the time dependence of
the connected correlation defined &(t)=(u(t)u_(0))
= (U (t)}{u_(0)), with C(t— +)=0 andC,(t=0) the equi-
librium connected correlation. Indeed they are simply related
through the fluctuation dissipation relatigfCy(t) =-TR(t)
or, in frequency space,
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) -T } and the probability of this active configuration to occur. Thus
Cliow) = E[Rk(“l)) -R(-iw)],. (A22)  we see that there is here an additional reduction by an extra
factor Tk, the total weight of barriers much smaller than
(note that the above correlation variations within regixe
2. Discussion are subdominant compared to the ones in regimevhich
really account for all but a small fraction of the total varia-

We now pause and comment on the results of the FRGon). Similarly one sees that the response corresponding to a
calculations we have just obtained. Let us first mention theyarrierx’k=¢ can be written as

nice features before stressing the unsatisfactory points below.

First we note that the Wilson scheme used directly on the 1 1 1 1
response function within the single time scale assumption |2~ eZ%x:k‘(’:F B0
indeed vyields, as we anticipated from general arguments in 1+l 1+
Sec. I, two distinct scaling regimes, tha=t/ 7, regime and (A24)
the XY=k’ In t regime, with scalindormsin Egs.(A8), (A10), ~
(A15), (A19). The scalingfunctionsthemselves were found as k—0 with x=kIn(1/iw)/B. Thus averaging with the
to be nontrivial, with interesting analytical structure. While weight (1/”B)ka¢(x/)dxl yields exactly our resulR(iw) in
the existence of th@’=t/ 7, regime seems to be a straight- egimeX if one chooses
forward consequence of the assumption of a single time scare
T the emergence of th&~k’Int regime within this hy- X 2-9
pothesis is less obvious. Within the Wilson scheme, it seems J H(x")dx’ = W (A25)

0 C
= -1

1
— Ee(x—x’),

to result from the system keeping a memory of a whole spec-
trum of smaller relaxation times~ (7,)%, x<x,, generated X

during the coarse graining procedure and naturally appears anpother puzzling feature of the above results is the non-
here(while one would naively expect the largest one only,  monotonicity of the above scaling functions. As discussed
to play a rolg. It does have the form QiCt'V";lted dynamics  pelow this is directly related to the assumption of a single
since the scaling variable is _truly=(T/_T*)I; Intand thus  ime scale, and has prompted us to reconsider the whole
corresponds to crossing barriers of height®. That such an  cajculation(at a high price of technical difficulyyin Sec. IIl.
activated regime shoult_j exist is physically rather natural. 'nWe see from Eq(A6) thatS,(iw) is a decreasing function of
deed we expect from simple droplet arguments that the equ gways and thaR,(iw) at fixediw is an increasing function
librium (;Iynamlcs of moddg at Iarg_e time differencéin 9€N- of k for k small enough. Correspondingly, the real-time so-
eral t-t', denoted here) is dominated by the rare active |;ion R (1) is an increasing function df at fixedt through-
configurations with(at leas} two quasidegenerate low free out the logarithmic regime and also in the short-time portion
energy states at scale~ 1/k of the_ system. The probability of the t~ 7, regime. Similarly, Eq.(A23) implies that the

to find two nearly degenerate miniman the scale of the correlations are also increasing functions lofat fixed t.

i ~ H . . . .
:\rllvermal _enertgy'li;) at scalet 1(:( k')s -Lk' gnelexpectﬁ these While this behavior is unexpected, we are presently unsure
0 mimima to be separated Dy a barrley also scaling as —yhether it is in fact unphysical. What is clear is that it is a

-~ _0 ili i - . . .
L.Jb kd an(_j thltj)s V\Il(heﬁ;jl? t>hUb equrlll_|brk|)umtherrg1ally ac consequence of the single time scale assumption. Indeed, the
tivated motion back and forth over this arrlds)] ECOMES ather simple and apparently physical expresskRyit)
active and gives rise to time-dependent correlations on the ~Un/ (k2r,) is also increasing witt for smallt/ .. It ap
- k K- -

scale Int~k™%. Our analytical result thus exhibits the correct ears that one can araue fairly aenerally that. provided there
scaling behavior and it is thus encouraging that such barriel 9 Y9 y » P

crossing behaviour and scaling comes out of the present R&X'Sts a I(_)ng-tlm_e regime W'th\ﬂi"'defmedi’ the response
calculation. must be increasing witk for t/ r, < 1.

Unon a closer look to our results in theregime. every- As discussed at length in the text, one does expect that the
P gime, Y single time scale description is unsufficient and one should

thing works as if there is an effective distribution of smaller; . S . X
- g S . . instead consider a distribution of time scales. Let us examine
barriersU,=x'k™” with a distribution of relaxation times

Y ) ) T the question of monotonicity wheR,(t) is simply a super-
=€ for 0<x’<x.. The total weight of this distribution qsition of elementary relaxation processes. Discarding the
being only ~Tk’ it can be written ak®/ B4(x'). ¢(x’) di-  subdominantk2 prefactor and writingz,=eYt where L
verges ak’ =x.. This is easily seen, e.g., on the form for the =1/k is the scale, one can consider the average
correlations. Indeed, using the above FDT relation one ob-

tains R(t) = f dup [Ulete Y. (A26)
Tk (Kt du
Cilty) — Cy(tp) = Py J > —oFW),  (A23) . . - .
B Kintyp U It is dominated by the saddle poibt* (L,t) solution of
for the correlations in the logarithmic regime. In this expres- teV - 1+4yInP[U]=0, (A27)

sion, theT/k? equilibrium correlation is usually explained as
T/K?=(1/k%25)(TK?), i.e., the product of the size of a posi- and the condition foR(t) to be an increasing function &f
tional fluctuation between two degenerate states at dcaleis

061107-22



BROAD RELAXATION SPECTRUM AND THE FIELD.. PHYSICAL REVIEW E 69, 061107(2004)

a.PU]> 0. (A28) APPENDIX B: SINGLE TIME SCALE CALCULATIONS—
NONEQUILIBRIUM AND AGING
For a Gaussian IR [U]=-(U-L%?/(2sL%) and t=0 (the
worse point one findsU*=L%-sL* and InP [U*]=-L"
+(s/2)L*. Thus one needa= 6. Note, however, that this
supposes that the Gaussian holds dowrUto<0, which The RG recursion relation for the response function de-
may not be the case in general. On the other hand, the onljved above was not restricted to equilibrium, and it is thus
real condition concerns the monotonicity of the scaling func4nteresting to write down the corresponding equati¢ios
tion itself. Thus, one way to reduce the effect of nonmonoresponse and correlatioris the full nonequilibrium regime.
tonicity is to increase the width of the distribution of time Wwithin the intrinsic limitations of the single time scale ap-
scales. o o proach, this allows in principle to acces the aging properties
To close this discussion, it is useful to contrast the presengf the system.

situation of an elastic system with fast growing barriers with  To obtain closed equations for the two time response
what happens in the marginal cage0. This is realized for  function R(t,t’') once again iterates E¢A2) from the same
a periodic model ird=2, e.qg., for the line of fixed points of TTI) initial condition Ry -t t/)ze(t_t/)e—kz(t—t’) up to |
the Cardy Ostlund model. There of course one expect =In(1/q), keepingt; finite and making no TTI assumption.
single scal|r)g regime compatible W'.th simple matching ar9l=rp s the response satisfies the differential equation
ments. Setting=0 in Eq. (A6) one finds the exact solution

1. Response function and various regimes

L \-20B RtE) = 8w (d + k) + Z(t,t)), (B1)
k2:<1+M) <1+iw ~) (A29)
lw 2 +B .
aASi(t,t) :Ek3‘0< R(t,t') = 8y J dt"Rk(t,t”)),
{;
- 2~[iw+2k(iw)], (A30)
2+p where matrix multiplication and inversion is with respect to

] N ) ~ 5 i (t,t"). Itis more convenient to avoid the two time self-energy
obtained writing €(k)/d%=(2/B)[1+k*(iw+2)™"]. For @  gnd write a closed equation f&(t,t') as
<1 this yields the scaling form

~ aR(t,t") =-2k t,t’ B2
S, (iw) = Rgly =ik, 22245, RALY) = = 2KRRI(L,L) (B2)
2_ ) —ZskB-ﬁ((RkRkRo(t )
=g|1 A3l '
yg( +2+’89) ; (A31)

t t
wherez is the equilibrium dynamical exponefitote that for _f dthk(tvtl)Rk(tlat,)f 1dt”Rk(tl,t”)>, (B3)

B— + one recovers EqA9)]. The self-energy nicely inter- t/ t;

polates betweel,(iw) ~iwk™? at smallio<k? (as also ob-

tained from considering the flow of the uniform~ €®') and . . e . .

o Bl 20z i 5 _ analysis of th|§ equatl_on is quite complicated and we h_ave
2(iw)~(2/2)"4iw)"* at largeiw>k". From there one ob- 1, attempted it. We will give only a few features, at a naive
tains the response functidR(t) =kAG(tk %), which is found level, which remain to be confirmed by a more detailed
to decay as in Eq(A17) with 7.~k and a characteristic analysis left for the future.

with initial condition szl(t,t’):H(t—t’)e‘kz(“t'). The full

time (1+2/B)P27, (instead ofer, obtained forg— +o) and The functionR(t,t’) depends on three variables but in the
which behaves as limit k<1,t'-t;>1,t-t'>1 we expect that it takes scaling
_ forms depending only on two variables. What these variables
Ry(t) ~ tA7, (A32) really are depends on the time regime, and one can identify

several possible time regimes and subregimes. They can be
in the limit 1<t<k™ The functiong obeys the equation  classified as follows, where we indicate the form expected
for the response functioR(t,t’), by order of increasing

BG+(2+B)VG' = (= 2+ B)G#yG - BG*,G*,G. time and time differences
(A33)
Int’
Note that such as scaling functigh of Y=tk? leads to a O In 7, <1
trivial scaling regime inY=Int/In(1/k) reduced to a delta
function at X¥=-z. Note finally that even in this case, the )
scaling regimeR(t) is again nonmonotonous: it vanishes at ol K In(t -t In(t-t)
k=0, increases up t&*, with t(k*)?=z8 and decreases be- (la) In(t-t') <1 Int’
yond. Int’ ' (t—t)In"(t-t’) '

061107-23



L. BALENTS AND P. LE DOUSSAL

t—t'
h[kaln(t—t’),t—,}
lb) t—t" ~t': ,
(Ib) (t-t)Int-t")
Int
f(k”lnt,n—>
Int Int Int’
(lc) —>1, : ,
Int’ In 7, t' In®t’
t
m<k"|nt’,—>
Tk
d) t~7. ——————— B4
(1d) i T (B4)
() t' ~ =,
F[keln(t—t’) i]
() M= g, K
In 7 C(t=t)InP(t-t)
t—t t-t'
of )
, . Tk
(Ilb) t—t' ~ 7 e (B5)
Int’ A
(nry > 1 equilibrium R (t-1),
In Tk

In(t—t") _ FIk? In(t—t")]

M , ~ ,
(na) In 7, (t—t)In27(t-t")
t—t’
G( )
, Tk
(Ib) t—t' ~ 7, n

Regime (lll) is the equilibrium TTI regime, where the
only dependence is in—t’. There are two scaling forms
possible corresponding to the two subregime@I)) and Y
(llib) studied in Appendix A. Fully equilibrated regingél )
is expected here for very large timest’ > 7, and is some-
how at variance with mean field moddlwhere one always
expect aging, e.g., for~t’, even for very largd’). In re-
gimes(l) and(ll) the mode k at’ has not yet equilibrated,
and the scaling functions ar now also function Isfin t’
(regime ) or t’'/ 7 (regime ), in addition of being functions
of t—t’. In both regimes(l) and (I) if t—t’ is small one
expects some kind of equilibrium regime. Indeed feit’
~0(1) we expect that there will be a fully TTI equilibrium
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[7] such regimes are also expected, some have been studied
demonstrated and studied in defdflere is also an equilibra-
tion time scale analogous tg).

In the determination of all the above regimes the quantity

t
) = Jt ' dt'R(t,t"), (B6)

which appears in EqB3) plays an important role. It is a
function oft alone. It satisfies the equation

t ~
A1) = ft | dthk(t,tl)[— 2Kkpy(ty) = Bk?"”(uk(tl)Z

ty
- ft dt,Rk(tlrt,)Mk(t,))]- (B7)

Its value can be understood by using the STS covariance
under u;— Uy +v,, Wherewv, is an arbitrary function. In a
general nonequilibrium situation, the STS gives constraints
relating different initial conditions att=t;. It can be written

as InZ[hy, e, U =0= 01 = Z[ e+ K2y, M, Uy =0 =01

—fktﬁktvk, where the initial condition is explicitly indicated.
It thus immediately yields

1 S (ug(t))
ﬂk(t):?(l_m) (B8)

Whent;> 7, we expect that the influence of the initial con-
dition on modek has been washed out, and we find the
equilibrium  constraint ML .. () =[5 R(7)dr=1/k?
[which, combined with FDT givesC,(0)—C,(*)=T/k?].
Thus, we expecfy(t) to take the form

Int
w®) =k?m(k? In t) PO 1, (B9)
k

,LLk(t) = k_ZM(t/Tk) t~ Tk» (BlO)

with M()=1 and a reductiok” in the short time regime
compared to asymptotic one, with an interpretation in terms
of the susceptibility to initial condition being almost 1, pre-
sumably with some rarédroplets ? configurations exhibit-
ing decorrelation.

To discuss the specific choice of the scaling functions and
prefactors we proceed as follows. Let us consider redgime
We have found that with the forms of the prefactors in sub-
regimes(lc) and(la) indicated above we could obtain from

regime, but it is also expected to be nonuniversal. A univerEd. (B7) nontrivial equations for the scaling functions. The

sal, quasiequilibriumregime is expected, however, fort’
~t'U<t’, u<1 [regimes(la) and(lla)]. As the time differ-
ence increases it should crossovet-at’ ~t’ to an interme-
diate aging regimgregimes(lb) and(llb)]. Regime | is most
complex as there one expects two later regimes-a5~t

regime(lb) is then necessary to matgkc) and (la). Next,
with the forms conjectured faila,b,0 the terms in Eq(B7)
scale, respectively, as k2-01-a) g4-6-2001ci)  2=6-01-a)+o
(where the first term is the derivativevith o;=v, 9§, «, re-
spectively, in each subregime. Thus eitles /2 and 6(1

~1'?, v>1 crossing over to yet another scaling regime when-@)=2-60+0 and only the last term counts er=6/2 and
t reaches,. It is interesting to note that either in Sinai model (1-«)=2-6/2 (in equilibrium regime Ill one hadr=0
[46] or even more clearly in the 1D random field Ising modelleading to«=2-6/2). Here, we see that ify(t) is deter-
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mined by an integration over regimés,b,9 as is natural, it  =[Ry,-U,-Ry,](t,t’). Equivalently one can separate the effect
implies 0=2-Ma, =y 50 0(1-«;), and one sees thatr  of the random force part of the disorder in the correlation and

=0/2 and write Cigi(t,t') =Cigp(t, 1)+ A(O)pag (Vg (1) [With (1)
3 2 :fgdt’Rk,,(t,t’)] with two closed equations fdg, andV, us-
y=é=a=--—, (B11) SN 1 = 4
2 6 ing C(t,t")=[R;- ViR J(t,t').

. . . ) . Proceeding as above, to determine the correlation one de-
is the only solution. Note that this contradicts the naive €XTines Uy = U\ (Similarly for Vi) and obtains
=In

pectation that the form in the quasiequilibrium regiihe)
would scale as the equilibrium form Illghey differ by a N o3-0[ 1 [P ,
power of a Irft—t’)]: to get y=2-2/6 would requirec=0, AUKLE) = Bk [ZCk(t’t) + 3G 1) - Gt )]’
and some argument that the valuegft) is controlled by (B15)
t—t” in the short time nonuniversal regime. . , , .

Accepting the above scenario as reasonable we find th¥ith Ci=in(t,)=Cy(t,t"), which should be solved along

equation for the scaling functiof(x,u) as with
— y21-a) , t t ’
PTG = Gat)= [ o [ R UG LR .

My il Y

1, ug Ooup | xu, u (B16)
du, u Lduy, with initial conditions atk=1:

xfgl—af XUy, — —f —
up up u U U (t,t") =27T8¢ + A(0) (k=1), (B17)

d
xfﬂlﬁf(x,ul)f xul,%)f(xuz,uﬂ)} -
> 1 > Cut,t)) = ?(e—kz\t—t’\ _ e—kz(t+t’))

(B12)
The 0 bound in the integral really comes from the ration + A(O)(l—e'kzt)(l—e'kzt') (k=1). (B18)
Int;/In t assumed to be very small. The first term in the right- K*

hand side of Eq(B3) gives a subdominant contribution. ) ] )
Similar equations hold for the other regimes. We have not/Sing the equation for,R, one can also write the closed
attempted to analyze further these equations at this staggduation forCy(t,t’) as
This would be necessary to fully confirm the self-consistency
of the scenario proposed here. aCi(tt) = [R(t,t)C(to,t') + R(t' 1) Ci(to, )]
ty,t>1
2. Correlation function

X [_ 2Ky v, ~ Ek3_9< R(ty,to) = 8 o,

Let us now indicate the RG equation obeyed by the cor-

relation function. It is obtained from considering the full lo- _
cal quadratic term in the running effective action X f gldt”Rk(tl,t”))} + BKCTIR(t,t) R (1, 1)
1

- Ef'vt>ti,t’>ti (i) ()Y (L), (B13)

1 1
X (ECk(tlatl) + ECk(tZatz) - Ck(tlat2)> :
One can also decompose it &k(t,t")=V|(t,t')+A,(0) by (B19)
extracting the persistent parntdisorde), requiring that
limy ¢ 1t +V,(t,t')=0. To lowest orderO(A) U, is cor-  and initial condition(B18). Alternatively, one can work with

rected and flows as follows: E:k andV,, which have a more complicated equation but sim-
, a1 1 L pler initial conditions
AUILt) =-T\A [ECAe",I(tut) +5Cpey (1)

- Crey(t,1))], (B14) Vit t') = 27T 8 (k=1), (B20)

where we assumed a flat initial conditiop_o=0 (otherwise . T, o, -

it should be addedand to this ordet); remains local. The Ctt') = (e ¥t - e et)) (k=1),

persistent part of EqB14) yields 4,A,(0)=-TI'|AZ in agree- K

ment with Eqs(15), (17) [using that the persistent part of the  One easily checks that upon the assumption of time trans-
parenthesis in EqB14) is the equilibrium connected corre- |ational invariance as should hold in the equilibrium regime,
lation C{} | =T)A"%€”]. Substracting it yields the flow of.  the equation forC(t,t')=Cy(t-t') becomes, as expected,
One closes the equations determinidig U, using Cy(t,t") equivalent to the one fdR(t—t’) via the FDT relation. Fur-
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ther study of the nonequilibrium equations, including the de-

termination of the FD violation rati(t,t’) in the various
regimes is left for forthcoming publications.

APPENDIX C: CORRECTIONS TO THE f{-TERM BY
PINNING DISORDER

PHYSICAL REVIEW E69, 061107(2004)

= Rﬁ,w:o il AU Ay A (U — U )F[ 2],
rtt’
(CH
as well as the graph in Fig. 4:

1
or® = —2J il]n<i&],t,A(urt = Uy + Uy — Uy )F
rrytt’

Let us give some details about the calculation of the 2

graphs in Figs. 3, 4. The correction to the effective action to

lowest order inT coming from the cross terfRA reads
1 A n -
or={\ - ('urt+|burt)(|urt’+|6urt’)A|:urt_urt’
rrott’

+ O(Up = urt’)] X Flzrl'"J 180; ¢ J Ur ¢,
t

1

1Pl
+ft 'urltlatlfmrltl"'ft 'mrltlatlmrlt11> ,
1 1

du,80
(Cy

X |:Zrl + ﬁ a.arltlé,tléurltlj| >
1

=f iart&t’A,(urt_urt’)F,[Zr]f Rot-t,Ra -t -
rtt tq

(CH
This yields the resul(48) in the text.

APPENDIX D: MAPPING OF RANDOM FRICTION
MODEL ONTO POLYMER AND RELATED PROBLEMS

The random friction mode{in its nontrivial T=0 limit)
can be mapped formally onto various other problems, such

with z = fil,du, and the averages ovéu, &0 are restricted  as, after disorder averaging, the statistical mechanics of a
to one-particle irreducible graphs. This splits into contribu-pure self-interacting chaire.g., a self-avoiding walk prob-

tions corresponding to graplia)—<c) in Fig. 3 which evalu-

lem) or, prior to averaging, to some random diffusion mod-

ate respectively aglropping all terms which do not correct els, e.g., depolarization of a spin diffusing in a random mag-

F):

2

X lzrl + ftl i 6“’1‘1‘9%“’1‘11 >

1
=- —A”(O)Ré,w:o (ZrZF”[Zr] _f iﬂrt'iﬂrt(ﬁturt)z)a
2 r tt’
(C2

1 o1
T@== f iurtlurtEA”(O)<(&th - Uy )%F
rrott’

1 R
x ST = —f Aug — un,)<i Siggd 80y F
rrott’

X lzu + Jtl iﬁrltl(?tl&]rltl‘| >

Rs,aFOf atat'[A(Urt - Urt')]iartiart'F"[Zr]a
rtt’

(C3

N

1
X 8T = —2f

r

, il’jrt<i‘51’:lrt’A(urt = Upgr + S
bt

‘mrt')F[Zrl"'jt A0y ¢ Jh Urt,
1

+f atl‘sufltlmrltl]>
t

netic field. Concerning its behavior one should distinguish
between the genuine modplith a fixed distributionP(7)]

and the effective one which appear as a coarse grained ver-
sion of the pinning problem, in whicPR(%) flows and be-
comes very broad.

First settingP(r,t) ~ 7(r)u,, one sees that E¢28) [with
f(r,u)=0 and T=0] is the Fokker-Planck equationP
=VD(r)[V+VV(r)]P for the diffusion of a particle with a
random diffusion coefficienD(r)=1/%(r) in a random po-
tential V(r)=~Inz(r), of equilibrium measuré.(r)=e™""
=7(r). When 5(r) is uncorrelated from site to site one does
not expect any anomalous behavior in any dimension, except
if the distribution of » has broad tailge.g., algebraic would
yield anomalous power law diffusigpnin the effective model
V(r) becomes Gaussian and grows with scale which corre-
sponds to a particle localized in some regions of space.

A complementary picture can be developed based on a
mapping onto a self-interacting chain. The response function
Ryt =ddu,/dhj,=o of this model is obtained by solving

[7(ré - VZ]du, =ho(r —r") st -t'), (D1)

with initial condition 8u,-o=0. This implieséu,=0 for all
t<<t’. Thus the response is a function tft’ alone and its
Laplace-Fourier transform=iw in any given random envi-

ronment, can be written as
Ry /(9) = r‘; r' :J+xdu(r|e‘“H|r’>
" = V2 s(r) 0 '
(D2)

where H=-V?+s#(r), which has a positive spectrum for
s>-s«, The values+ at whichH develops an eigenstate of
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zero eigenvaluge.g., s* =1/7,a in the “classical” limitc
—0) gives the large time decay &,/ (t) ~e 5.

We can also write, in the Fourier domain, using the Feyn-

man Kac formula

+00 _ x(u)=r
NP N
0

x(0)=r’

u 1 1/dx\?
eXp{_L dv[:‘(ﬁ) +iw57;(x(v))”, (D3)

with the “time” variablesu and v. We have splitteds(x)
=5+ 57(x) for convenience and added a small mass tgrm

Dx(v),

PHYSICAL REVIEW E 69, 061107(2004)

1
~ >, D7
Raw ipw + cyppw’ + P ©7
in the noncritical regime, while we expect
1 Y
00 ~=\7—= . 3| D8
Rewo, (Inw+ Cn2w2> (D8)

ie., quo,t~t7”1e‘°’72“7in the critical regime, and fog> 0,
the appropriate scaling function of .
The critical regime correspond to
—2\2d
72

(D9)

for convenience. In this form the problem has the form of a

spin decoherence problem, the integral being dominated b
paths which average well over the random relaxation time
rather than paths with multiple returns to the same regior‘?

which average poorly and then cancel incohere(dligtails

about the mapping and special distribution of noise can b

found in Ref.[47]).
Averaging over disorder leads, for small disorder, to

+oo o 1
Rf-r/,(ff due‘<‘“""”>”2<r—r’,u,g=5w2n2>,
0

(u)=r

Z(r-r',u,g) = J): Dx(v), (D4)

0)=r’

u 2 u
p(f d”%(ﬂ‘f) i fo dodo’ ga(x(v) —X“’”)’

which is the partition function of a self-avoiding walk in the
Edwards representation. We have retained only the second

momentz, of §7(x), but of course the full interaction could
be written using=[z]. The theory is described by a nontrivial
fixed point ind<4 [related to then=0 O(n) model with
mass(u+iwz) and couplingg~ gA*]. This is compatible
with the previous conclusions for tHe theories using per-
turbation theory if we takéas a simple index, with no power
counting dimensioriit plays a role somewhat similar to the
replica indexa). The correction tay by g°> comes from the
contraction of twoz, vertices, of the formé(w?7,) = w*75
and is indeed logarithmically divergentd+4. Note that the
mass term is thus relevant at the fixed p@ntg*.

This analysis yields information at finite time. The Gins-

burg criterion gives the critical regime as>g 4 or
u>g2“9 in which Z(r-r’,u,g) takes the scaling form

Z(r,u,9) = u™F[ru™]Z(q=0,u,9), (D5)

Z2(q=0,u,g) ~ u” e %9y (D6)

with s.(g)=cg for d>2, s.g)=cgln(1/g) for d=2, and
s.(g)=cg?® for d=1. Thus ford>2 we expect that

hich for the genuine model gives a singularity only at finite
true) time (see, however, Ref47] for possibly more radical
offect of non-Gaussian disordeHowever, in the limit of
very broad disorder, as in the effective model, one has
?772 and thus the critical singularity moves to small

Note that ford<<2 the behavior is more radical as one
expects, e.g., in=1:

1
7w+ c(7,) 2R3+

Ryo = (D10)

Thus to conclude, in the absence of pinning disorder at
T=0 theF term is preserved but generate higher order time
derivative terms. The theory can be rescaled so as to possess
a nontrivial finite w, finite disorder term, which presumably
in d>2 produces only preexponential algebraic corrections
to the leading behaviors given by the most relevarterm.

For the effective model this critical behavior should be ob-
servable even at smadl.

APPENDIX E: FULL FLOW OF THE TRUNCATED
EFFECTIVE ACTION

In this appendix we discuss an approach to the calculation
of the mean response function extending the approximate
FRG scheme of Sec. lll, but still neglecting the functional
dependence of operators considered in Sec. IV. In Sec. Il the
broad distribution of time scales was embodied in the so-
called F term. We uncover here an interesting structure of
additional operators in the spirit of the more complete set of
moments(t"1), - --(tPN), discussed in the Introduction. Recall
that in Sec. Il B, we showed that, although tReterm did
not renormalize itself, it did generate higher derivative terms.
Such termscan contribute to the frequency dependence of
the response function. We studied in the previous appendix
the response function of the pure random friction model,
which does generate higher derivative terms, but neglects the
scale dependence generated by the pinning disorder. Here we
consider these two effects in tandem, hence modifying the
results for R(t), R(w) within the purely random friction
model. While we have not been able to obtain simple expres-
sions in this more complet@lbeit still nonfunctiongl ap-
proximation, one can go quite far in reducing the problem to
one of applied mathematics.
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FIG. 12. Graphs with onlyn=1 vertices which enter in the
response functioa) and its self-energyb).

n=4
m=7

1. Generalized random friction model

To proceed further one needs to construct a more system-

atic approach where all possible important terms in the dy-
namical action functional are included. We will generalize
the F term (at zero temperature for simplicityn the form

m U

|
v )y

S S R

n=1pp --pp=1

iG, ---
U,
1t

n

X g -+ I U (E1)
and we will often denote byn=p, +- - - +p, the total number
of time derivative in a given term of the sum. This form of

the action neglects terms with products of time derivatives o

U, at the same time, as well as statistically translationally

invariant functional dependence, e.g., o) -uy,. However,
it does include considerably more physics, and as we wil

see, enough generality to approach the problem of computing
the averaged response functions. This kinetic part of the ac-

PHYSICAL REVIEW E69, 061107(2004)

2

o= VN
O \/
O = eee

FIG. 13. Graphical representation of &nvertex F”l with
n=4, p;=1, p=2, p3=1, p,=3, m=%;p;=7. Dots represent the
number of time derivative§i.e., power of frequency factpreach
leg has a different frequency.

+ FET?+1) + F F(n+2—n ) + AF(n )F(n+1—n )

m-m’

GF® = AFD

+A2F(n F(n n)

m-m’

(ES

In Eqg. (E5), we have neglected coefficients, powers,aind

fine distinctions such as the precise formAofvhich appears
*’n a given term. Repeatdgrimed indices other tham and

| (@) el

' ' ]
a! L TH + [TTH

®

+ + ..

tion corresponds to the following generalization of the ran-

dom friction model:

+0o0

> (1) Uy = VU + F(Ug, 1),

m=1

(E2)

with [77p1(r1) /)N (ro)lc=n!(- 1)n+l|:pl Py 5r1,...,rn-
The response function is related to the lowést1)

member of this hierarchy via

R (iw) = k2 +Sy(iw), (E3)
=S (iw)= > FP(w)™, (E4)
m=1

and within the Wilson scheme the true physical response

function R;l(iw) is obtained via the same formula using the
running Ff;)h:m(mk)- This is represented graphically in Fig.
12.

One can carry perturbation theory using the generalized
F. The vertices are shown in Figs. 13, 14. In this notation,

FIG. 14. Compact notation for a geneffic vertex. The open
circle represents ah vertex with an arbitrary number of legsnot
shown. On incomindu) lines, an arbitrary number of time deriva-
tives (powers ofw) are indicated by an open square.

(@)

©)

@

©

there are a variety of important one loop diagrams to be
considered. These are shown in Fig. 15. Schematically, these F|G. 15. One-loop diagrammatic contributions to fReerms.

contributions give rise to an RG equation for tﬁﬁ of the
form

The diagrams irfa)—(e) represent contributions t of orderF, AF,
F2, F2A, andF2A?, respectively.
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n are summed. The pure random friction model contains only m ™t 1 m! (2m+2n-3)!1
those diagrammatic contributions with no pinning disorder an= —11 =

A=0. Thus only the second and third terms in E§5) are i 2m+2r-1  n!(4m-3)!!
taken into account for instance by the mapping to a polyme

(E9)

The 778"“) coefficients are not determined by the asymptotic

problem in the previous appendix. Note that there are NQnalvsi o
5 o o ysis. In principle, they should be matched at some scale
terms of O(FA) contributing to the renormalization df, |* >0 to the form of theFfQ) coefficients determined by the

Wh'Ch, follows dlagrammatlca_\lly _because one negds at Ieasetarly stages of renormalization, in which the linearized RG
two F’s to put boxegtime derivative¥ on the incoming legs

originating from the two pinning disorder vertices equation used to obtain them is not valid. One might imagine
9 9 the two pinning : beginning with a model in which the bare relaxation time
A beautiful simplicity arises due to the extremely broad

ity ; (m) Valm(M < 7m
distribution of time scales in the RG, and can be seen frony'aS distributed with cumulantg, *, and naivelyz, o

the structure of Eq(ED). In particular, we note that the total we will use this prescription below _purely n qrder to sim

number of powers ob is conserved by all terms. Moreover plify notation. Howe\{er, amore Qetalled anaIyS|s of the_ early
i . m . 2mP-m ' stages of renormalization is in fact required to discern

from the prior ana(I%ss, we eXF_’eC'f ~i T We thus  yhether this is indeed correct.

conjecture that alF ' scale in this wayndependenthof n,

. 2_ ) ) . . . oe . .
e, F"~ 72" (see below to see that this scaling is indeed 2. Equation for the equilibrium response function
self-consistent Under this assumption, the terms involving  \we are now in a position to extract the response function.

more than twoF’s in Eq. (E5) can be seen to be strongly apniyving Egs.(E4), (E8), (E9) for n=1 gives the response as
subdominant, which follows from the convexity of then2 an infinite series ifw:

—-m factor in the exponential. Thus the superexponential

(Gaussiangrowth of the moments of the time scales, which Rel(iw) = X, (- )™M exp{(2n? - m)U,

is directly connected to the broad distribution of relaxation m

times, plays a key role in simplifying the structure of the RG.
One can thus restrict the analysis to the linear pakR of

the full one-loop RG equation. Note that this indeed com-whereU,=U,j,x/. Since it is not easy to resum this series,

bines the effects of pinning disorder and the “upward” feed-and its convergence properties are unclear, we now reformu-

back of the random friction model—the first two terms in Eq. |ate the above calculation in a functional way, in hopes of

+[y-(d-2+0)l-In(liw)]m}, (EL10

(E5). The linearized RG equation reads surmounting the limitations of the expansion in terms of mo-
ments of relaxation times. Let us introduce the generating
AF ). =120 =n)FP) o+ (n+ 1)ag @) function
n o p-l e Gliw2= 2 (i0)"™"2F1, (E1D)
n+1 >n=
><r_21 1 Fp1'~'p,_1(pr—q)p,+1~--pnq’ (E6) m=n=1

which conveniently captures both tketerm (and hence dis-

) o _ tribution of relaxation timesand the response function
wherea=A%"2A,. The general study of this equation is again

highly difficult but we see that it does have special solutions F(2)=G(0,2), (E12
where theFEB?} depend only upom=3,,pi. From the above

consideration about the asymptotic behavior it is rather natu- i +3 (o) = K4 Gliowz E13
ral to look for such solutions. 0w+ Xy(ie) 9z (0. Dlz=o. (E13

) () ; ;
Thus we letF{pi}_FLm' Then the linear RG equatici6) Multiplying Eq. (E7) by the appropriate powers afandiw
becomes and summing gives the flow equation
4G =T(20,G + 22252G) + ae" " Miws, ,[i (3,G - 3,G| =0)].
(E14)
This is somewhat simplified by defining the derivative

This is much easier to solve and the attentive reader will1(i®,2=9,G(iw,2),
easily find that this infinite hierarchy of differential flow IH=T\(H + 529,H + 222H) + ae™ @ iwa, (iwaH).
equations is solved asymptotically by the ansatz

(3’|F|(,r:31 =Ty (2n? - n)Fl(,r:% +(n+Dae @ (m- n)FI(,r:\:D'
(E7)

(E19H
'73, n-m 2m?-m A hopefully illuminating change of variables is to define
(n) — _e(d—2+0)l (ﬂ) ';7(m)(_ 1)m+1an
PrPn | g . 0 ' u=In(lliw), (E16)
(E®
v=In(Zliw) = (0+d=2) £In(aly). (E17
wherem=3,_,pi. The a;, coefficients are given by ThenK(u,v)=H(iw,z), and obeys
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dy K=K+ 39,K + 2,93}( +(dy—9,)(€v3,K), (E18 plicit function of u;,=u;—u,, and time derivatives afi, and
U, (and similarly for all other verticesone may write the
whereg U, = xe? as before. Note that tHe term is recovered sum of all possible contractions as
in the limitv — %~ andu-v=In z+const is fixed, in which the )
second term is negligible. In that limit, we recover the diffu- 102512 = [Riodu, * (9112 0y, + (AR12) g, |S1o+ .

sion with drift equation(51), and the appropriate solution is (F5)
K(u,v)=®(w-u)=F'(e"™"). More general solutions of Eq.
(E18) remain to be found. We recall that here causalitiR,,=0 restricts contractions
only with u; (first term), U; (second tern) etc.
CALCULATION define the expansion
+oc
In this appendix we show how the systematic calculation 1 o
of the one loop correction to the dynamical effective action Ri2= 15| o2+ 21 Apdidi2 ), (F6)
can be organized, and sketch explicit calculation on the sim- -
plest examples. We focus dn=0. 5 o
The schematic form of the dynamical actiSris given in 2 __ Kk _ L2 (N
the text in Eq(77) as a sum of terms containing an increas- KR(s) = K2+3(s) 1 +n§l( CARC
ing number of independent timgsumulants: .
i 1. 1. .. =1+ A, (F7)
S:|U1$1_§|u1|U2812_6|U1|U2|U38123_“‘. (Fl) p=1 P
We use the same schematic notation where the indices A =-K2, Ay=-K2D+K 42, (F8)

1,2,3,..., areshort hand notations fay, t,,ts, ..., Space co-
ordinate and all time and space integrations are implicitThe momentum structure of the one loop diagrams being
From Eq.(77) S; is parametrized by an infinite set of kinetic trivial, within Wilson one can replack=A everywhere. As
coefficientsy, D, ... ,S1, by a set of second cumulant func- €xplained in the text this expansion in power of frequency
tions A,G,A,B,C,...,S;»3 by a set of third cumulants can be done consistently and corresponds diagrammatically
H,W,..., etc.[from Eq.(79)]. to expansion in number of dots.

In a first stage we write the total one loop corrections to  One then evaluate the contractions shifting time integra-
the action as the sum of tadpoles, two vertex loop, thredions. Let us illustrate this on simple examples.
vertex triangles, etc., with eithet;, or S;,3 (and so onptype The corrections te; andD can be obtained from E¢F2)
vertices using the full response functid®y,, inverse of Using Eq.(F5). One has
i0,S;, to contract the vertice@nternal lineg. Enumeratin _
péséible contractions and pgrforming sosme combinatgrics, 581__[R12(9”12+((91R12) '9“1+(a§R12)a“1]$12’ (F9)
yields upon grouping resulting terms by number of indepen-
dent times: ==[(812+ A1181p+ Aoy 815) 0, S1z + (9181

881 = = (ilxS19), (F2) + Ala%‘SlZ)ﬁUlSlZ + 0"%5123&151& (F10

R 1 i s . =- 2
381, =(il3S109) + {5834<512|U3'U4> +(S24i03)(S13ily) |, S1d (1 +Agdp + Aod5)dy, S1o+ (9 + A)

3 X 3y, S12+ d50,S12]- (F11)
In the second line we have used the expangk) and in
1 L A A the last line we have used théfR;,=-dR;, and integrated
08123= {5545(512§U4ius> + 3(S514105XS235l4) by parts ovet,. Then time derivatives on the vertek, can
be evaluated and tranformed into derivatives with respect to
K o . . fields as
+ 5(512|U4|U5>5345] +[2(S34i05)(S151U6)S2gila) .
dp = 92812= (= Updy , + Updyy, ) S12, (F12)
+ 3(S12104106)(S34105)Ss6l, (F4)
where additiona{time) indices are integrated over Note that ‘95 = ‘95512: (= Uzdy,, * Ug‘?ﬁlz)‘glz- (F13

S, is corrected only by tadpoles§;, by tadpoles and two
vertex loops, and so on.

In this formula notations such as, e.§S;,050,) denote
the sum of all possible contractions of thdields with theu
fields inside the brackdht T=0 these are the only possible
contraction SinceS;,=81U15,Uq,Uy,Uy,Us, ...] is an ex- dn=G'(0) - 5A"(0), (F14

At all stages of the calculation we can drop all terms con-
taining more than a fixed numbérere 3 of time derivatives
since they will contribute only to higher order terms in the
effective action. Putting everything together we obtain
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5D = - A(0) + C'(0) - 27k2G'(0) APPENDIX G: INTEGRABLE “UNIRELAXATIONAL

MODEL"
- A"(0)(k?D - k%), (F195
In this section we introduce a set of integrable models in

which, in terms of rescaled quantities, yield the E(¥)),  various dimensions which can be used as a check of the FRG
(96) in the text. equations derived in this paper. This models have a remark-

Next we want to evaluate the corrections to second cumuable property that despite being random the dynamics is ex-
lant functionsA,G,A, B, C encoded indS;,. We start by the tremely simple and the relaxation time scales are simply that
simplest, the tadpole, which yields the feedback of third cu0f @ single mode generalized oscillator.

mulants into second ones: Let us consider first the toy model in zero dimension
R (U du, = F(uy) — mPuy, (G1)
Sliadpoidiz = (St24l3) = (Ryady, Si2s+ 91R130, Si23 o ' '
with f(u)=-V’(u), when
+ Rp30y,S123+ 32R2201,S129), (F16)
n(u) =71 -m2 (W], (G2

=281 (1 + A1) 9y, + 339y 1S123 (F17) it can be rewritten

2
n

: . alf(uy) = mPu] = = =[f(u) - mPu,], G3

26404, + it g, + Ui iz [f(w -nful=-=[fw) -, (69

(F18  which can be integrated exactly, yielding a pure exponential

. . . ) relaxation with a single time scale:
with d3=Usd,,.. This gives the 3,(0,0,u) term in Eq.(68)

for A and theH feeding term in the equation f@ (we have f(uy) — mPu, = € ™[ f(ug) — mPug). (G4

not explicitly computed the feeding &% into A,B,C butitis ) )

easily obtained from the aboye Drawing F(u)=f(u)-m?u as a function ofu we see that all
Next we need thes2, corrections taS;, which yield all initial conditions starting in an interval between two adjacent

non linear terms in Eqg91), (97)«99) for G,A,B,C. The  Minima and maxima and which contains a zerd=af), will
corresponding correction t8S;, consists in the two terms in converge exponentially to this zero &fu) [48]. Thus, if
the square bracket in EqGF3). The full calculation being F(u) has several zeroes the convergence will be to minima
tedious we only indicate here how one shuffles time integral@nd maxima of the potential enerdy(u)=V(u)+ 1/2mu?

in the first term(denoteds;S;,). Starting from (depending on the initial conditignThis should not be a
surprise since in that casgu) changes sign so the dynamics
5,S1,= %%4<3120304>: 5834[(R14— R24)<9u12+ 1R14, is no more dissipative. One can then extend the system to

nonzero temperaturé> 0, imposing FDT with a stationary
measuree "W/ py adding(, to the right-hand side of Eq.
(G1) with correlations

> 2
+ )Ro40, + R1ady, + I5Ro49, Il (R13~ Roa)

+ 01 Rya0y, + 2Rp30), + 3§R13501 + ﬁngsauz]Slz,
(F19) (&di) = 2Ty(u). (GH

Note that this means imaginary noise at points whgke is
negative. Thus the convergence to the maximavaf) is
killed by interference effects.
- - The exact response function associated touliield can
81812= 33 (1 + Agds + Agds?) (814 — 824) 9, + (94 + Ardg?) be obtained for this model &=0. Upon adding an infini-
_ tesimal perturbatioh; on the right-hand side of E4G1) the
X (8140y, * Soay) + 842(614&-01 + 82403,)] changesu is such that

using again identities such théR,,=-d,R.4 expanding the
R and integrating by parts ovéy andt;z one can write

X [(1+A1d5+ Agdg?) (813~ 8r9)dy, + (35 + Ayds) [F () — MP]ou, = - mzf Oh, (G6)

X (813y, + Baady) + 957 (S1ay, + 82593,) 112 (F20) t B
wherevu, is given by Eq.(G4) and RE?,):(l/TﬁG_t(mz/”). The

This is then in the form where, as above, all time derivativesisorder averaged response function is thus

can be replaced by derivatives over fields acting eithe$gn

or Sy, using identities such as EqF12) together with f'(u) |\t ©

(9453834:—03043534834. The evaluation of the second term in Ru = (1 —?> v (G7)

Eq. (F3) proceeds similarly and the sum of the two yields

Egs.(92), (97)«99) in the text. Note that causality must be In the large time limit time translational invariance is re-

enforced at each step of the calculation. stored and one finds

061107-31



L. BALENTS AND P. LE DOUSSAL

R’[t’ = Rito,) (GS)
This a consequence of the following property:
f! -1
(1_ (‘;t)> -1, (G9)
m

where for each realization of the random functign), u; is
the solution of

f(uy) = muy, (G10

and the average is taken with respect to any translationall

invariant distribution forf(u).

A similar model may be introduced in arbitrary dimen-

sion. It is defined as

;I.:rt == I:rt + grtv (Gll)

Fre= Vg + f(Un,r). (G12
This yields the equation of motion

- ;VZU” - ;f’(urtar)urt = V2urt + f(urtvr) + grt- (G13)

This is identical in form to the model discussed in the text
with the exception that the damping coefficient is wave vec-
tor g dependent and vanishes @s Upon averaging over

PHYSICAL REVIEW E69, 061107(2004)

1
= . G16
Raw (1 +7iw) (616
Similar arguments as above yield that this is also the exact

response.
The one loop Wilson FRG of this model is very similar to
the one performed for the model in the text. Since the relax-
ation time is dimensionless in this model vertices suclsas
andA scale identically taA. Hence the appropriate rescaled
functions for these vertices a@&~ A, °G, A~ A, °A. The one
loop FRG equat|ons are identical to the one given in the text
Yor G andA apart from thqlmear) rescaling partnot involv-
ing ¢) being identical to that foA. One can then check that
the relation

G(u)=A’(u), (G17

A(u) = — 720" (u), (G198

specific to this model, are indeed exactly preserved by the
FRG, as announced in the text. Computing the correction to
the self-energy yields

33(w) = AJAfHA"(0)[R(w) - R(0)] + G’ (0)[ 2 wR(w)
-iwR(0)] + A(0)w’R(w)}. (G19

disorder one obtains an MSR action identical to the modebne then checks that this exactly vanishes usk(§)

studied in the text apart from thg# mean damping with

G(u) = 7A"(u), (G149

A(U) = = 77A"(u), (G19

=—77A"(0), G'(0)=7A"(0) and the above exact form for
R(w).

This model can be further generalized to include second
time derivative termd® # 0. Adding the termDF, to the
left-hand side of Eq(G11) one obtains the model in the text

and no other higher order vertex for a Gaussian distribéited with 7— g%z andD — gD in the bare inverse response func-
(more general expressions can be easily obtained for nonion. Similar arguments yield invariance of the FRG function
Gaussian distributions The bare response function of this within the manifold(100) given in the text(third cumulants

model factors as
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+D(Uy, 1)Uy =V2ug+ (U, ). Multipying by Uy, we note that it
has conserved “total energyg,E=0 with Ezfr[H[un,r]

+ 1/2D(un,r)u§]. It thus corresponds to some Hamiltonian
classical dynamicgwith a nonlinear mass termThe associ-
ated MSR dynamical action obeys the continuous global
symmetry. This, however, is not FDT, even if we choose
=1/T, meaning that if we add the standard ter¢h®) it would

not satisfy FDT. The reason for that can be traced to the fact
that the boundary term obtained upon applying the symmetry
(112 is [E(t;) —E(t;)]/ T and thus contain extra time derivatives
which invalidate the arguments made in this section. It is pos-
sible, however, to add additional noise at the boundary, i.e., a
bulk term =T [;a[D(uy,r)(ili)?], so that FDT is satisfied, i.e.,
the extra time derivative term is cancelled upon integration
over {i; at the boundary. This is relevant also for the disorder
case, since averaging over disorder one getsma2 term
with C a first derivativeB=C’/2 andA=0. This indeed is the
condition for invariance of then=2 term under the continuous
global X symmetry.

Another symmetry often considered associated to FDilijs

— =il 4+ (T HSH/ W)y, , Ug— U~ This is a symmetry

of the unaveraged dynamical effective action. It is useful, e.g.,
to study[50] consequences of the accidental FDT property of
the one-dimensional KPZ equation. It seems however a priori
less useful in order to study the effective action once one in-
tegrates over modes, i.e., in the context of Wilson FR(Go0
further complications arise after averaging over disordir
may be worth studying within the exact RG context, which is
beyond the scope of the present paper.

As a curiosity note the exagimplicit) solution for =2 ob-
tained by writing Eq(A6) as Bd(k2)/ d2=2k2+2(iw+3)7,
which yieIdsEk(iw):—(,E/Z)In[kz(l+2f§d)\e‘2'\’ﬁ(iw+)\)‘l].

Note that sincedy/dg=(1+g)e¥ formally this integral reads
simply fdgeé*Y9€ put the contour remains to be worked out.
Ideally one should also take into account the influence of
modes with wave vectorg<k on the relaxation of mod&
since these are obviously left out of the RG scheme. However,
simple arguments suggest that this influence decays fast: the
influence of the jumps in the modpon the modeé may decay

as fast a9, At least this is necessary condition for such
droplet arguments to make sense.
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