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We study thermally activated, low-temperature equilibrium dynamics of elastic systems pinned by disorder
using one loop functional renormalization group(FRG). Through a series of increasingly complete approxi-
mations, we investigate how the field theory reveals the glassy nature of the dynamics, in particular divergent
barriers and barrier distributions controling the spectrum of relaxation times. First, we naively assume a single
relaxation timetk for each wave vectork, leading to analytical expressions for equilibrium dynamical response
and correlations. These exhibit two distinct scaling regimes(scaling variablesTku ln t and t /tk, respectively,
with T the temperature,u the energy fluctuation exponent, andtk,eck−u/T) and are easily extended to quasi-
equilibrium and aging regimes. A careful study of the dynamical operators encoding for fluctuations of the
relaxation times shows that this first approach is unsatisfactory. A second stage of approximation including
these fluctuations, based on a truncation of the dynamical effective action to a random friction model, yields a
size sLd dependent log-normal distribution of relaxation times(effective barriers centered aroundLu and of
fluctuations,Lu/2) and some procedure to estimate dynamical scaling functions. Finally, we study the full
structure of the running dynamical effective action within the field theory. We find that relaxation time distri-
butions are nontrivial(broad but not log normal) and encoded in a closed hierarchy of FRG equations divided
into levelsp=0,1, . . .,corresponding to vertices proportional to thepth power of frequencyvp. We show how
each levelp can be solved independently of higher ones, the lowest onesp=0d comprising the statics. A
thermal boundary layer ansatz(TBLA ) appears as a consistent solution. It extends the one discovered in the
statics which was shown to embody droplet thermal fluctuations. Although perturbative control remains a
challenge, the structure of the dynamical TBLA which encodes barrier distributions opens the way for deeper
understanding of the field theory approach to glasses.
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I. INTRODUCTION

Extremely slow dynamics is a ubiquitous property of
complex and disordered materials. Despite many decades of
research, current understanding of suchglassymotion is lim-
ited to phenomenological models[1], mean-field theory
[2–4], and abstract caricatures in terms of the dynamics of
small numbers of degrees of freedom in a complex energy
landscape[5,6]. In addition, exact solutions in one dimension
(e.g., for the random field Ising model[7]) little is known
about the nonequilibrium behavior of realistic models. True
disordered materials, from spin glasses to supercooled liq-
uids to the pinned elastic medium, involve extensive num-
bers of local degrees of freedom such as atoms and spins
moving collectively in a random environment[8–10], with
either external or self-induced randomness. The pinned elas-
tic medium being the simplest model involving such physics
we study it as a prototype. It is of interest by itself for nu-
merous experimental systems such as vortex lattices in su-
perconductors[10,11], interfaces in magnets[12,13], charge
density waves[14], and Wigner crystals[15]. The equation
of motion is

h]turt = c¹r
2urt + fsurt,rd + zsr,td, s1d

whereusrd is a height(or displacement) field, h a bare fric-
tional damping coefficient,c is the elastic modulus,fsu,rd is

the quenched random pinning force, andzsr ,td is a thermal
noise. Herer is hed-dimensional internal coordinate of the
elastic object. Bothf and z are Gaussian random variables
with zero mean and second moment

fsu,rdfsu8,r8d = Dsu − u8dddsr − r8d, s2d

kzsr,tdzsr8,t8dl = 2hTddsr − r8ddst − t8d, s3d

whereT is the temperature and we set Boltzmann’s constant
kB=1. The value ofh generally sets the relaxation time scale,
e.g., hereh= t0cL2, t0 being the microscopic time scale, and
L the short scale momentum cutoff. In general, one may be
interested in a variety of thermal and sample-to-sample fluc-
tuations of the system, as well as various responses of the
system to external probes. We will focus on the simplest of
the latter, described by(linear) response functions

Rrr8tt8 =K ]urstd
]zr8st8d

L , s4d

in a given disorder realization, and its disorder average
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Rrr8tt8 = Rr−r8,tt8. s5d

At equilibrium, both the single sample and the averaged re-
sponse functions become time translationally invariant,
Rr−r8,tt8=Rr−r8,t−t8 andRr−r8,tt8=Rr−r8,t−t8.

Equation(1) has the usual Langevin form, and guarantees
the existence of a stable equilibrium probability distribution,
provided, as assumed here, thatfsu,rd=−]Vsu,rd /]u is of
gradient form. The equilibrium distribution(strictly speaking
defined in a finite size sample) has the Boltzmann form
psud~exps−Hfug /Td, with

Hfug =E ddrF c

2
u ¹ uu2 + V„usr d,r …G . s6d

Three universality classes of special interest are usually con-
sidered:(i) short range disorderDsud which describes, e.g.,
random bond(RB) disorder for magnetic domain walls,(ii )
long range disorder which describes, e.g., random field(RF)
disorder, and(ii ) random periodic(RP) Dsud which describes
pinned density waves or lattices. Although these systems dif-
fer in their details, e.g., in their roughness exponentu, rz,
they do not yield qualitatively different behavior in their dy-
namical response studied here.

The aim of the present paper is to develop an approach
based on the renormalization group(RG) to study the low-
temperature dynamics of pinned elastic systems described by
Eq. (1). Although we focus on equilibrium dynamics, some
of our considerations are also relevant for nonequilibrium
relaxation. It was shown that to describe the statics at equi-
librium one needs to follow the full correlator of the random
potential(or the random force) using a functional RG(FRG)
method in ad=4−e expansion[16,17]. Several extensions
describe correlated disorder[18], the driven dynamics near
depinning[19–21] and the small applied force, thermally ac-
tivated, creep regime[22]. However, until now the FRG has
not been used to study the dynamical response and correla-
tions in equilibrium or aging regimes, nor to probe the cru-
cial question of the distribution of the relaxation times. These
are important quantities directly probed in experiments
where the system is often dominated by fluctuations or not
able to reach equilibrium within the experimental time
scales. We investigate this problem in three stages, of in-
creasing accuracy(and, unfortunately, complexity), only in
the last stage attempt is made to be exhaustive. A companion
paper(Ref. [23]) is devoted to the statics. A short account of
both works can be found in Ref.[24]. Some of the present
considerations concerning approximate schemes have also
been discussed independently in Ref.[25].

The first question investigated in the present paper is the
validity of the single time scale approximation within the
RG. Specifically, in the first part of our study(Sec. II) we
use, as was done in previous works[19,20,22], the simplify-
ing hypothesis that the relaxation of each internal mode, of
wave vectork, is controlled by a single relaxation time scale
tk. This allows us to obtain closed equations, within the one
loop FRG, for the general two time response and correla-
tions, as measured in aging experiments. It yields, in the
equilibrium regime on which focus from then on, interesting

analytical expressions for the equilibrium response and cor-
relation which exhibit two distinct scaling regimes with scal-
ing variablesku ln t andt /tk, respectively(u=d−2+2z is the
energy fluctuation exponent andtk,eck−u/T). However, sev-
eral features of these results are found to be unsatisfactory,
such as the nonmonotonicity of the response as a function of
wave vector. A more complete description including time
scale fluctuations thus appears necessary.

That sample to sample fluctuations should play an impor-
tant role both in the statics and dynamics of disordered
glasses is indeed expected from phenomenological argu-
ments, e.g., the droplet scenario[1,26], which appears to
describe simpler models such as Eq.(6) relatively well, at
least in low dimensions[27]. Let us recall its main conclu-
sions. In its simplest form, it supposes the existence, at each
length scaleL, of a small number of excitations of size
d F,Lz above a ground state, drawn from an energy distri-
bution of width dE,Lu with constant weight neardE=0.
While typically the elastic manifold is localized near a
ground state, disorder averages of static thermal fluctuations
at a given scale are dominated by rare samples/regions with
two nearly degenerate minima. For example, as a simple but
remarkable consequence, thes2ndth moment ofu fluctua-
tions is expected to behave as

sku2l − kul2dn , cnsT/LudL2nz. s7d

The droplet picture supposes that the long-time equilibrium
dynamics is dominated by thermal activation between these
quasidegenerate minima controlled by barriers of typical
scaleUL,Lc. Little is known about the distribution of these
barriers, but there is some evidence[28–30] thatc<u. Even
a modest distribution of barriers, however, due to the Arrhen-
ius law tL,eUL/T, yields relaxation time scales with an ex-
tremely broad distribution asT→0. Some probes of this
broad distribution are the relaxation time moments which
may be defined in a variety of ways. One begins by defining
the relaxation time moments in a single sample,

ktnlL = L−sd+2dE
0

`

dtE
rr8

L

tnRrr8t, s8d

which, for a particular disorder realization, describe the re-
sponse of the center of mass coordinate to a(spatially) uni-
form force. Forn=1 sktlLd this gives one definition of the
relaxation time of a single sample. A set of disorder-averaged
moments may be obtained then by directly averaging the
above objectsktnlL giving the averaged response of the sys-
tem

ktnlL = q2UE
0

`

dttnRq,tU
q=1/L

. s9d

Alternatively, thedistribution(from sample to sample) of the
unaveraged relaxation timektlL is described by a second set
of momentsktlL

n. In general, one may construct many such
objects scaling dimensionally astn but with different physi-
cal content. Mathematically, this is accomplished by averag-
ing arbitrary products of the single sample moments, i.e.,
ktp1lL¯ ktpNlL, with S j=1

N pj =n. Any of these “nth” moments
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may behave as,easndU0Lu/T with asndùn, or grow even
faster with lntn@Lu, nor is it clear that the different defini-
tions for a givenn exhibit the same growth. Indeed, we will
ultimately find different operators in a dynamical field theo-
retic formulation corresponding to each different type of mo-
ment, and some indications that indeed different growth rates
obtain for each of these. A theory of these time scales is
crucial to understanding both equilibrium response and cor-
relations and to near-equilibrium phenomena such as creep
[10,11,13,26]. Extensive calculations are possible in certain
zero-dimensional toy models[49]. Although some analytical
results have been obtained fordù1 within mean-field limits
[31–33], these do not include thermal activation over diver-
gent barrierssUL,Lud. The FRG[16,19–21], on the other
hand, extended to nonzero temperature[18,22], seems to
capture, already at the level of the single time scale approxi-
mation the existence of these growing barriers. However,
until now neither the rare events nor fluctuating barriers have
been obtained in this approach.

In the main part of our study(Secs. III and IV) we thus
investigate how relaxation time distributions appear within
the FRG. We first show that the equation of motion(1) gen-
erates under coarse graining arandom friction term hsrd
(equivalently a random relaxation timet,1/h). It is then
natural to define, as a toy model, a random friction model
which, in the absence of pinning disorder possesses a mani-
fold of fixed points indexed by the full coarse grained prob-
ability distribution of the friction. A highly nontrivial ques-
tion is how this distribution will flow under RG due to
feedback from nonlinear terms when pinning disorder is re-
introduced. We consider this question at the one loop level,
in two stages.

In Sec. III we present a highly simplified analysis, but
with the merit of explicitly exhibiting the broadening of the
barrier distribution and allowing for some analytical expres-
sions. It yields asymptotically a log-normal distribution of
relaxation times, i.e., a nearly Gaussian distribution of effec-
tive barriers centered aroundLu and of typical fluctuations
,Lu/2. Such a log-normal tail corresponds to the moment
exponentsasnd=2n2−n. This is compared with numerical
results[28–30] in the case of a directed polymer, where the
width was fitted to,Lu. The question of the width is impor-
tant since a width,Lu/2 is not expected to be large enough to
modify the creep exponent, as can be seen from reexamining
the calculations of Ref.[22] while a ,Lu width [29] would
pose a problem to this order. We derive, within the same
approximate scheme(Appendix E), closed equations for cor-
relations and response functions(the fact that the width
grows very fast can be exploited in a resummation of the
fastest growing terms in the dynamical part of the Martin
Siggia Rose functional). We find that the broadening is suf-
ficiently fast to invalidate some of the previous analysis, e.g.,
the existence of at /tk scaling regime.

Section IV contains the full systematic analysis of the
running dynamical effective action. It is found that relaxation
times distributions are determined by a closed hierarchy of
FRG equations, each levelp corresponding to an increasing
power of frequencyvp can be solved independently of
higher ones, the lowest one being the staticsp=0. This hier-

archy involves functions parametrizing the local cross corre-
lations between pinning disorder and random relaxation
times. The previous approximation corresponds to projecting
these FRG functions to their values at zero, while in fact the
full set of nonlinear differential equations obeyed by these
functions need to be solved, a formidably complex task. A
thermal boundary layer ansatz(TBLA ) appears to be a con-
sistent solution. It extends the one discovered in the statics
which was shown to reproduce droplet theory type behavior
in thermal fluctuations. Here it yields a natural growth for
moments of relaxation times measured by nontrivial expo-
nentsasndÞ2n2−n determined by eigenvalue problems. Al-
though perturbative control remains a challenge, the struc-
ture of the dynamical TBLA which encodes for barrier
distributions opens the way for deeper understanding of the
field theory approach to glasses.

The detailed outline of the paper is as follows. In Sec. II
we recall the standard results of the FRG for the equilibrium
dynamics using a single relaxation time approach. We then
give a qualitative derivation of the two scaling regimes for
the equilibrium response and correlation functions. The de-
tailed equations obeyed by these functions are derived using
a Wilson scheme in Appendix A and their analytical form is
analyzed in the equilibrium regime in Appendix A and in the
aging regime in Appendix B. In Sec. III we go beyond the
single relaxation time approach. The random friction model
is introduced in Sec. III B. We then incorporate pinning dis-
order in an approximate way in Sec. III C, analyze the result-
ing distribution of relaxation times and show that it become
broad. The breakdown of thevtk scaling is analyzed in Sec.
III D. In Sec. IV we discuss the systematics of the structure
of the dynamical effective action. It does contain the statics
which its recalled, together with its thermal boundary layer
ansatz solution, in its equilibrium dynamics formulation in
Sec. IV A. Then in Sec. IV B–IV E we display the hierarchi-
cal structure of the FRG equations and how a generalized
thermal boundary later structure appears as a consistent so-
lution determining the growth of the moments of the relax-
ation times through nontrivial eigenvalue problems. We con-
clude in Sec. V with some general remarks. Finally, a set of
appendixes elaborate on various details and calculated re-
lated to the main text.

II. SINGLE TIME-SCALE APPROXIMATION

At conventional pure critical points, scaling emerges di-
rectly from the existence of a RG fixed point. Moreover, in
an epsilon expansion, thescaling functionsare obtained to
leading order by a simple matching procedure(REF). The
static equilibrium FRG for the random elastic problem is,
aside from the complication of a functional fixed point, very
similar to such an ordinary RG calculation. The important
distinction is the nonanalyticity of theT=0 fixed point func-
tion D* sud which at finite temperature results in a narrow

boundary layer for smallu& T̃le, whose width continuously
decreases under the FRG as the running effective tempera-

ture T̃l (see below) flows to zero. The corresponding growth
of the mean-squared curvature of the effective potential felt
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by the manifold is a hint of unconventional behavior not
present in ordinary critical theories.

The influence of this divergence is very dramatic in the
dynamics. In this section, we attempt to naively extend the
conventional RG approach to calculating response functions
to the random manifold problem. This conventional approach
implicitly assumes the existence of a single time scale(at a
given wave vector), as we shall soon see. This assumption
leads to somewhat unsatisfactory results for the response
function, forcing us to reconsider the distribution of time-
scales in Sec. III. Although we will ultimately conclude that
the single time-scale calculation is fundamentally incorrect,
it is useful to review the methodology of this approach.

We begin by reviewing the basics of the FRG. We employ
the Martin-Siggia-Rose(MSR) formalism [34], in order to
use field-theoretic techniques. The MSR approach is based

on the generating functionalZfh,ĥg for the disorder-
averaged correlation and response functions

Zfh,ĥg =E DuDûe−Sfu,ûg+E
rt

ĥrturt+hrtiûrt , s10d

where the dynamics in Eq.(1) is encoded in the action
Sfu,ûg=S0fu,ûg+Sintfu,ûg, with

S0fu,ûg =E
rt

iûrtsh̄]t − ¹2durt − h̄TE
rt

siûrtdsiûrtd, s11d

Sintfu,ûg = −
1

2
E

rtt8
siûrtdsiûrt8dDsurt − urt8d, s12d

whereĥ, h are source fields, and we have put a overbar on
the friction coefficienth→ h̄ to indicate the mean, i.e., that it
is for now a constant uniform in space. As justified below we
have setc=1. We use the Ito convention to regularize equal-
time response functions, i.e.,Rqst ,td=0 andRqst+,td=1/h̄.
The disorder averaged response and correlations are given by

Rqst,t8d =
dkuqstdl
dhqst8d

= kuqstdiû−qst8dlS, s13d

Cqst,t8d = kuqstdu−qst8dl = kuqstdu−qst8dlS. s14d

The FRG in its Wilsonian formulation begins by introduc-
ing an ultraviolet(short distance) cutoff L on the spatial
Fourier wave vectors. In the FRG, this cutoff is progressively
reduced toLl =Le−l s0, l ,`d. At each stage of the RG, the
spatial Fourier components ofu, û are divided into “slow”
and “fast” modes, with momenta in the range 0,k,Lle

−dl

and Lle
−dl,k,Ll, respectively. The fast modes are then

integrated out, working perturbatively inSint to one loop or-
der, andl is increased bydl. This leads, in the limit of in-
finitesimal rescalingdl→0, to a smooth renormalization of
the effective action for the remaining slow modes, and hence
to continuous FRG equations for the running disorder cor-
relatorDlsud.

Naive power counting(see, e.g., Refs.[16,17]) indicates
that all terms beyond those in Eqs.(11), (12) are irrelevant,
so we for the moment neglect their generation under the
FRG. The flow of the random pinning correlatorDlsud has
been derived many times previously[18–20,22]. It is better
expressed in terms of the dimensionless rescaled pinning

force correlatorD̃lsud defined such that

Dlsud =
Le

Ad
e−ele2zlD̃lsue−zld, s15d

with Ad=Sd/ s2pdd=1/f2d−1pd/2Gsd/2dg, and reads

]lD̃sud = se − 2zdD̃sud + zuD̃8sud + T̃lD̃9sud s16d

+ D̃9sudfD̃s0d − D̃sudg − D̃8sud2. s17d

Here the fluctuation dissipation theorem ensures that the
temperatureTl =T is uncorrected but the effective dimension-

less temperatureT̃l =AdTLd−2e−ul itself flows to zero, con-
trolled by the energy fluctuation exponentu=d−2+2z, the
temperature being formally irrelevant. Here and in the fol-
lowing we do not not make any spatial or temporal rescal-
ings of coordinates or momenta.

Study of the one loop FRG equation shows that, with the
proper value for the roughness exponentz,Osed depending
on the universality class(RB, RF, or RP), the dimensionless
disorder correlator convergesnonuniformlyto a nonanalytic
“fixed-point” function D* sud formally of order,Osed as l
→`, whose functional form is not important for this discus-
sion (see, however, Sec. IV for much more details). The non-
uniformity of this convergence is due to a boundary-layer
centered onu=0, whose width decreases continuously with
scale[18,22]. In particular one can show that, to this order
[18,22]

lim
l→+`

T̃lD̃l9s0d → − x2. s18d

Thus asymptotically the curvature of the correlator diverges
with the scale[herex= uD8* s0+du] is a constant depending of
the universality class, e.g., for periodic systemsx= x̃e, e=4
−d.

To one loop, all that remains is the renormalization of the
mean friction coefficient, since the elastic modulus is fixed
by Galilean invariance[17,18,22] and the temperature by the
fluctuation-dissipation-theorem(FDT). This was determined
in Refs.[18–20,22]:

]lh̄ = Glh̄, s19d

whereGl =−D̃l9s0d,l→+`x2/ T̃l thus grows with the scale as

Gl , b̃eul , s20d

b̃ = T * /T, s21d

where b̃ is the reduced bare inverse temperature andT*
=x2L2−d/Ad a nonuniversal temperature scale. Equation(19)
implies activated scaling[18,22] since the friction coeffi-
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cient, which plays the role of a time scalet=h /L2, grows
exponentially with the lengthel:

h̄l = h̄0 expF b̃

u
seul − 1dG . s22d

[in d=4 one hasGl =b̃e2l / l2 and b̃= x̃2L−2/ sTA4d].
Activated dynamics leads to ambiguities in a single time-

scale approach, as can be seen from a simple matching argu-
ment. We consider for simplicity the equilibrium dynamics,
in which the response and correlation functions are time-
translationally invariant(TTI). It is then convenient to work
in terms of both frequencyv and wave vector. The usual RG
considerations lead one naively to expect that the response
function obeys the relation

Rksvd = e2lRkelsvtld, s23d

wheretl =e2lh̄l / h̄0. We now obtain twoinequivalentscaling
forms by matching. In particular, if we choosekel =1 (we set
L=1 for now), we find

Rk
s1dsvd =

1

k2Rs1dsvtkd, s24d

with

tk =
1

k2esb̃/udsk−u−1d. s25d

If, however, we choosevtl =1, we find asymptotically

Rk
s2d = F 1

b̃
lnS 1

v
DG2/u

Rs2dS 1

b̃
kuuln vuD . s26d

Note that these two formscannotbe related by redefining the
two scaling functionsRs1/2d, as can be seen from the fact that
lnsvtkd, ln v+sx /udk−u=sx /u+kuuln vud /ku, which is not a
function of kuuln vu only.

The inequivalence of Eqs.(24), (26) appears to point to
the existence of two scaling regimes, which we will call the
X and Y scaling limits. The first is formally defined by de-
fining the scaling variableY=vtk. With Y fixed andv, k
→0, one obtains the scaling regime in Eq.(24). The second
scaling regime obtains withX=kuuln vu fixed andv, k→0.
To reconcile the two regimes, note that lnY,sx /u+Xd /ku,
so that for fixedX, asv, k→0 (the X scaling limit) Y→`.
The second scaling regime[Eq. (26)] thus appears to occur at
the “boundary”sY=`d of the first.

We have indeed verified this behavior, and obtained the
analytical scaling forms similar to those in Refs.[24,26] us-
ing FRG techniquesunder the assumption of a single char-
acteristic time scale parametrized byh̄. These calculations
are performed in Appendix A for equilibrium and in Appen-
dix B for the more general nonequilibrium situation. Inter-
estingly, the general equations for the response function in
this approach share some similarities to those arising in the
(infinitely connected and/or largeN) mean field limit of a
number of model glasses. As discussed in Appendices A and
B their solutions exhibit several time regimes with various

aging scaling forms and also show differences compared to
the mean field.

Many features of these results, however, point to prob-
lems with the single time scale assumption, as also discussed
in Appendix A. The real-time response function is found to
be anincreasingfunction of wave vector at fixed time in the
logarithmic sXd scaling regime. This somewhat unexpected
(and possibly unphysical) behavior is apparently a very gen-
eral consequence of the mereexistenceof two distinct scal-
ing limits, and hence is inevitable given the single time scale
approach. More significantly, the appearance of a sharply
definedtk in themeanresponse function(in theY regime) is
difficult to understand on physical grounds. Even in(ran-
dom) models involving only a small number of degrees of
freedom, while a given sample may be characterized by a
longest relaxation time, the sample to sample variations of
this would generally lead, as espoused in the Introduction, to
the disappearance of such a time in the mean response. In the
collective elastic model considered here, interactions be-
tween the enormous number of modes with differing wave
vector (and hence differing relaxation rates) would only
worsen the situation.

III. BROAD DISTRIBUTIONS OF TIME SCALES:
SIMPLIFIED APPROACH

A. Distribution of relaxation times and the f term

Up to this point, we have assumed that the dynamics at
each scale can be described by a single friction coefficient
tl =h̄l, which corresponds to a sharply defined time scale for
relaxation. On general grounds, however, we should expect
extremely broad distributions of relaxation times. This fol-
lows simply from the Arrhenius law

tk = tl=lnsk/Ld , t0 expsUk/Td, s27d

which estimates the time required to overcome an energy
barrier of heightUk at scalek. At low temperature, even a
modestly wide distribution ofUk gives rise to extremely
broadly distributedtk. If this distribution is sufficiently
broad, it is no longer adequately characterized by its average,
and indeed many physical quantities may depend upon the
precise form of the distribution.

We now investigate how this distribution can be incorpo-
rated into the FRG treatment within the MSR formalism. We
will consider a spatially varying friction coefficienthsrd,
with the equation of motion(1) modified to

hsrd]turt = c¹r
2urt + fsurt,rd + zsr,td, s28d

where, in order to maintain the stationary equilibrium Bolt-
zmann probability distribution function, the noise correla-
tions are modified to

kzsr,tdzsr8,t8dl = 2hsrdTddsr − r8ddst − t8d. s29d

For simplicity, we will initially takehsrd to be identically
and independently distributed at eachr, according to the dis-
tribution Pshd. The distribution naturally enters the MSR
theory via its characteristic function, which we parametrize
by Fszd:
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E
0

+`

dhPshde−zh = e−Ffzg. s30d

The Taylor series expansion ofFszd thereby gives the con-
nected cumulants ofh,

Ffzg = o
m=1

`

hsmd s− 1dm+1

m!
zm, s31d

wherehsmd=fhmgC is themth cumulant(connected) moment
of h. For the continuum fieldhsrd, the analogous expression
is

expS−E
r
hsrdzsrdD = expS−E

r
FfzsrdgD . s32d

We initially assume no cross correlations betweenhsrd and
fsu,rd, though these can to some extent be generated in per-
turbation theory. The single time scale model studied in the
previous section(and Appendices A and B) with hsrd=h̄
corresponds toFszd=h̄z. Although this is not essential, we
shall assume here an initially narrow(but not d function)
distributionPshd. As shown in Appendix C, even if initially
F=h̄z, a higher-order analysis shows that a nontrivial distri-
bution is generated under coarse graining.

In the MSR formalism, the modified equation of motion
(28), (29) is described by the action

S0fu,ûg =E
rt

h̄ iûrt]turt − iûrtc¹r
2urt − h̄Tiûrtiûrt , s33d

Sintfu,ûg =E
r
F̃FE

t
siûrt]turt − TiûrtiûrtdG

−
1

2
E

r,t,t8
siûrtdsiûrt8dDsurt − urt8d. s34d

We have definedFfzg=h̄z+F̃fzg where F̃fzg starts with
higher powers ofz, to do perturbation theory using the aver-
age friction coefficient. One immediate remark is that the
statistical tilt/translational symmetry(STS) holds[27], thusc
will not be corrected and so we set it toc=1. Note that theh̄
kinetic term could equally well be considered as an interac-
tion term, in the spirit of a “perturbation theory iniv” with
bare propagator simplyRq,v=1/q2 [in real time Rqst ,t8d
=1/q2dst−− t8d]. Note also that for each realization, the in-
stantaneous response function satisfies

Rsr ,r 8,t − t8 = 0 + d =
1

hsrd
dsr − r 8d. s35d

Averaging over disorder givesRkst− t8=0+d=1/h.
Although it may seem obvious, it is important to stress at

this stage that the renormalized relaxation time moments are
measurable quantities. One can define the renormalized mo-
ments in the usual way from the effective actionG. Taking
the same form as Eq.(34), one has

Gint = −
hs2d

2
E

rtt8
ûrtu̇rtûrt8u̇rt + ¯, s36d

with of course many higher order terms describing the higher
friction coefficient moments, momentum dependence of ver-
tices, etc. As usual in field theory, correlation functions are
exactly evaluated at tree level using this effective action—
thus thehs2d term here has the meaning of a fully renormal-
ized second moment on the scale of the system size(or in-
frared momentum cutoff). One may then consider the
physically defined relaxation time from Eq.(8) and construct
its second moment

ktlL
2 =

1

L2sd+2d E dtdt8tt8E
r1r18r28r2

kur1tûr180lkur2t8ûr280l.

s37d

On physical grounds, in equilibrium, we expect that the latter
product of response functions in two “replicas” is the same
as considering the product of two subsequent responses in a
single replica, provided the two response measurements are
taken far apart:

kur1tûr180lkur2t8ûr280l = lim
t→`

kur1t+tûr18tur2t8ûr280l. s38d

This latter four-point function can be calculated using the
effective action above. One finds

lim
t→`

E
r1r18r28r2

kur1t+tûr18tur2t8ûr280l

= L2dRq0tRq0t8 + hs2dLdsRq0
p Ṙq0

dtsRq0
p Ṙq0

dt8, s39d

whereq0,1/L is the infrared momentum cutoff and the as-
terisk denotes the convolution in the time domain. Integrat-
ing over the time coordinates and using the result of statisti-
cal translational symmetryRsq0,0d=1/q0

2, one then obtains

ktlL
2 , sh̄L2d2 + hs2dL4−d. s40d

For a not too broad distribution of friction coefficients with
scale independenths2d, the correction due tohs2d is vanishing
for d.4, and small compared to the first “disconnected”
term (scaling asktlL

2) for any d. However, for the glassy
dynamics studied here, we will findhs2d is exponentially
larger thanh̄2 as a function ofL, so that in fact the second
term is dominant. Thus the second moment of the physical
relaxation timektlL

2 indeed measures the coupling constant
hs2d as promised.

B. No pinning disorder: the random friction model

We now turn to the FRG analysis of the modified action in
Eqs.(33), (34). We first consideronly the effects of random-
ness inh, neglectingthe pinning disorderD. This defines a
random friction model described by the MSR action with
D=0. Remarkably, the random friction model represents an
infinite manifold of fixed points parametrized byFfzg. In-
deed, a diagrammatic treatment explicitly shows the absence

of renormalization ofFfzg order by order inF̃. Despite this
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absence of renormalization, the random friction model rep-
resents a nontrivial interacting field theory.

For simplicity, we sketch this here forT=0. In this limit,
the vertex is

E
r
F̃FE

t
iûrt]turtG . s41d

Diagrams occuring in the expansion ofF are indicated in
Figs. 1(a) and 1(b). The fields connected by dotted lines oc-
cur at the same spatial point, solid lines with and without
arrows indicateu and û fields, respectively. Considering a
product of the form

E
r1

SE
t1

iûr1t1
]t1

ur1t1Dn1E
r2

SE
t2

iûr2t2
]t2

ur2t2Dn2

, s42d

the only possible contractions contain products of the type
k]t j

ur jtj
iûrktk

l with no time loop allowed. Thus all relative
time integrals factor and one is left with products of integrals
of the typeet]tRsr j −rk,td which vanish since the response
function vanishes fort,0 andt→ +` [35]. ThusF does not
correctF. However,F itself produces new terms such as

E
r,t

iûrt]t
2urt , s43d

E
r,t1,t2

iûrt1
]t1

2 urt1
iûrt2

]t2
2 urt2

, s44d

obtained by time gradient expansions, with nonvanishing co-
efficients[of the form ,ett]tRsr j −tk,td], as well as similar
terms with higher order time derivatives(note that similar
terms containing also higher order spatial gradients are also
generated, but we will not consider them as important here
[36]). One can embed these new terms into a new function

E
r
F2FE

t
iûrt]t

2urtG , s45d

and so on—the full systematics of these new terms will be
examined later in Appendix E and Sec. IV. It is important to
note for consistency that there is also no feedback from
higher-derivative terms such asF2 back intoF. Graphically,
as in Figs. 1(a) and 1(b), one can perform time integration by
parts along each line joining several vertices which leads to
termset]t

pût]t
qut with p+q.1. Indeed a very useful rule is

represented graphically on Fig. 2. One can simply shift the
time derivative along any internal response line to the exter-
nal one(at T=0 any diagram is a tree of such lines) since,
schematically,

utkiût]t1
ut1

liût1
= ut]t1

Rt1,tiût1
s46d

=− ut]tRt1,tiût1
→ ]tutRt1,tiût1

, s47d

after integration by parts. In the Fourier domain, this rule is
just conservation of frequency along all solid lines, since the
interactions are all fully nonlocal in time and therefore do
not carry frequency.

To conclude, the apparent nonrenormalization ofFfzg
makes it tempting to definea manifold of fixed point theories
indexed byFfzg. These fixed points are quite interesting and
nontrivial. For instance, the computation of the averaged re-
sponse function atT=0 can be mapped exactly onto the
problem of calculating the partition function for a self-
avoiding walk. This is developed further in Appendix D.

C. Pinning disorder: distribution of barriers

We now consider the combined effects of the pinning dis-
order and distribution of time scales. Because the pinning
disorder can be defined in a purely static theory(using the
equilibrium Bolzmann partition function), its renormaliza-
tion is unaffected by theF term. However, the converse is
not correct. Due to the nonrenormalization ofF in the ran-
dom friction model, we must consider only terms of order
FpDq, with qù1. The leading nonvanishing terms correcting
F at OsDd are linear inF, and are indicated diagrammatically
in Figs. 3, 4. They are computed in detail in Appendix C but
one easily sees the structure of the result, thanks to the prop-
erty of shifting internal time derivatives(dots in the figures)
to the external ones, e.g., that the three graphs in Fig. 3 have
identical values.

There is a subtle distinction between the contributions in
Fig. 3 and those in Fig. 4. In particular, in the diagram of Fig.
4, the pinning vertex suffers contractions between both of its
independent time variables(i.e., graphically both ends of the

FIG. 1. Top: graphical representation of the disorder vertex
(double lines) and of theF term vertex(the dots represent the time
derivatives) where the arrows represent aû response field and solid
line au field (arrows are along inreasing time). Bottom: (a) correc-
tions of theF term to itself atT=0 which vanish(b) corrections to
orderF2 which also vanish(as all orders do—see text).

FIG. 2. Shifting of a time derivative from an internal line(in the
middle) to an external one(right) along a line of response functions
at T=0 (works for disorder as well asF vertices).
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double line) and the sametime variable(dotted leg) of the
f-term vertex. The locality of the response function therefore
implies that the two internal times of the pinning force cor-
relator are constrained to be nearby, justifying a temporal
gradient expansion and hence giving a leading contribution
proportional toD9s0d. In the diagrams of Fig. 3, by contrast,
the two times of the pinning vertex are contracted withdif-
ferent legs of theF term. These diagrams therefore generate
in fact more general terms involvingD9sut−ut8d with free
integration overt and t8. If uut−ut8u is not extremely small
(within the boundary layer), this is a small correction lacking
the singular temperature dependence. It is thus not clear at
this stage whether or not the graphs in Fig. 3 should in fact
be interpreted as renormalizations of theF term.

In fact, the true situation is more delicate, and will be
returned to in Sec. IV. For the moment, however, we will
shut our eyes to this complication, and gain some physical
insight by taking into account both sets of diagrams as renor-

malizations of thef term. Their sum, integrated in the mo-
mentum shell, gives the following correction toF:

dFfzg = − D9s0dSdLl
d−4dlszF8fzg + 2z2F9fzgd. s48d

Here theF8 andF9 terms comes from the diagrams in Figs.
4, 3, respectively. In agreement with Eq.(19) it can be re-
written as

]lFlfzg = s]l ln h̄ldszFl8fzg + 2z2Fl9fzgd. s49d

Note that the disputed diagrams in Fig. 3 do not contribute to
the mean relaxation time due to the second derivative ofz, so
that h̄ is unambiguous. The RG equations for the connected
momentshsnd of h are thereby obtained using Eq.(31) as

hl
snd , h0

sndS h̄l

h̄0
D2n2−n

. s50d

It is more convenient and physical to introduce the ran-
dom barrierU=ln h, and the barrier corresponding to the
average relaxation timeUl =ln h̄l. Changing to the energy
variablev=ln z, and lettingGlsvd=Flsevd gives

]Ul
Glfvg = 2Gl9fvg − Gl8fvg, s51d

i.e., a diffusion with drift equation. Some physical under-
standing ofGsvd can be obtained from the two extreme lim-
its

Gsvd , H h̄ev, v → − `,

v − ln Ps0d, v → `,
s52d

as can easily be found from Eq.(30), assuming a constant
probability density for small barriers 0, Ps0d,`. More
generally, using Eq.(30) the diffusing and drifting “density”
Gl is related to the barrier probability distribution via

Glfvg = − lnE dUPlsUde−eU+v
. s53d

Formally, the solution of Eq.(51) is given by

Glsvd =E dw
1

Î8pUl

expF−
sv − Ul − wd2

8Ul
GG0swd,

s54d

and inverting the results via Eq.(53) to obtain PlsUd. A
simple approximation may be applied in the regime of large
U@Ul andUl @1, in whichGlsvd!1. In this case, it is valid
(and justifieda posteriori since the distribution of barriers
become broad) to replacee−eU+v

by usU,−vd and thus one
gets thatPlsUd<Gl8s−Ud. This yields [via Eq. (54) or di-
rectly differentiating Eq.(51)]

PlsUd <
1

Î8pUl

expS−
sU + Uld2

8Ul
D, U * Ul . s55d

Note that this asymptotic form reproduces all cumulants
hl

snd=fexpsnUdgC,expfs2n2−ndUlg as expected.

FIG. 3. Graphs involving pinning disorder which correct theF
term proportionally toF9.

FIG. 4. Graphs involving pinning disorder which correct theF
term proportionally toF8.
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Equation(55) is clearly not exact. Indeed, a breakdown of
Eq. (55) is inevitable on physical grounds, since the mean/
typical barrier cannot be negative. It suggests a distribution
of barriers with a width proportional toÎUl, and hence a
peaked distribution(since the mean barrier~Ul). Neverthe-
less, it does represent a very broad(in fact log-normal)
renormalized distribution of characteristic timesh. While
there is no reason to believe that such a log-normal tail is
exact, the true distribution of relaxation times will certainly
be very broad, with significant consequences for the average
response functions.

D. Breakdown of vtk scaling

The first consequences of this broad distribution occur in
the variancehs2d of the relaxation time, and hence atOsv2d
in the response function. We therefore examine more care-
fully the Osv2d terms in the dynamical action, but for the
moment still neglecting the full functional dependence of
these terms(i.e., onut−ut8

). In the kinetic part of the action
(representing relaxation times and their fluctuations), we in-
clude the following terms:

Skin =E
rt

fh̄iûrt]turt + Diûrt]t
2urtg

−
hs2d

2
E

rt1t2

iûrt1
]t1

urt1
iûrt2

]t2
urt2

. s56d

One has in general, definingktnlR=et tnRkstd /et Rkstd:

ktlR = h̄, s57d

kt2lR − ktlR
2 = h̄2 − 2D. s58d

There is no generic constraint on the sign ofD. If the inverse
response function contained only the two above terms(h̄ and
D), then causality requiresD to be positive(similar to an
inertial term) [37]. Since in general these are only trucation
of an infinite series of terms in power ofiv, the only con-
straint is causality, i.e., that all poles inv lie on the same side
of the real axis. These three couplings satisfy the following
closed RG flow equations to first order inD:

]lDl = GlDl − GlLl
−2h̄l

2 − AdLl
d−2hl

s2d, s59d

]lh̄l = Glh̄l , s60d

]lhl
s2d = 6Glhl

s2d, s61d

whereGl =−D̃l9s0d, b̃eul and the correction toD from hs2d is
the graph represented in Fig. 5.

For hs2d=0 the equations forDl and hl, which can be
obtained, e.g., from Eqs.(A2), (A6) by expansion to second
order in iv, are consistently solved withDl ,Ll

−2h̄l
2, in the

limit of large l, where h̄l =h̄0 expfb̃seul −1d /ug, consistent
with the Taylor expansion of the putative scaling function
gsy= ivtkd given in (A9) based on the single time scale
analysis(A9).

For hs2d.0, however, the broad distribution of relaxation
times completely alters the situation. From the above equa-
tions hl

s2d,h0
s2dsh̄l / h̄0d6 and, hence,hl

s2d@h̄l
2 (the mere ex-

ponential prefactors are negligible) at largel. Thus the feed-
back ofhs2d in D dominates the renormalization ofD, and at
large l one finds

Dl ,
AdLl

d−2

6Gl
h0

s2dS h̄l

h̄0
D6

. s62d

Thus, allowing for fluctuations in relaxation times invali-
dates thevtk scaling form already at orderv2.

It is still possible, within the approximation scheme of the
present Section, to obtain an equation for the disorder aver-
aged response function. This is explored further in Appendix
E.

IV. DISTRIBUTION OF TIME SCALES: FULL STRUCTURE
OF THE DYNAMICAL FIELD THEORY

We have established the mechanism for breakdown of the
unphysicalvtk scaling regime and described the indications
of a broad distribution of timescales within the FRG. How-
ever, to properly determine this distribution and its conse-
quences, e.g., on the mean response function, requires a
much more complete analysis. While we have unfortunately
so far been unable to carry this program to completion, in
this section we will detail the formal structure within which
this analysis must be carried out. In particular, we shall see
that the distribution of relaxation times and its consequences
is encoded within the boundary layer(BL) regime already
present in the statics. An understanding of the equilibrium
dynamics is therefore contingent first upon an understanding
of the static BL, and we first describe the rather complex
structure therein. Following this discussion, we show how
the BL regime recurs in dynamical theory, and show how it
can be formulated to describe broad distributions and non-
trivial scaling of the moments of the relaxation time.

A. Statics thermal boundary layer

In the appropriate limit the dynamical theory should re-
produce the results for the corresponding statics quantity. We
can therefore benefit from the knowledge of the thermal
boundary layer in the statics. To do so let us review how the
static disorder correlations are encoded in the dynamical for-
malism.

FIG. 5. Correction to thesivd2 term in the response function
coming from the second momenths2d of the relaxation time
distribution.
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At equilibrium, the part of the dynamical action contain-
ing the static disorder correlations comprises those terms
with no explicit time derivatives, and reads

Sint = −
1

2
E

rt1t2

iûrt1
iûrt2

Dsurt1
− urt2

d

−
1

6
E

rt1t2t3

iûrt1
iûrt2

iûrt3
Sd

s3dsurt1
,urt2

,urt3
d − ¯ .

s63d

This form is easily understood as arising from the cumulants
of the pinning force. The relation was given for the second
cumulant in Eq.(3) and for higher ones it reads

fsu1,r1d ¯ fsuk,rkd
c
= s− dkSd

skdsu1, . . . ,ukdddsr1, . . . ,rkd,

s64d

with Sd
s2dsu,u8d;Dsu−u8d as in Eq.(3). Due to statistical

translational invariance Sskdsu1, . . . ,ukd=Sskdsu1+v , . . . ,uk

+vd and satisfy reflection symmetrySskds−u1, . . . ,−ukd
=s−dkSskdsu1, . . . ,ukd. The cumulants higher than second are
generated by coarse graining, and are thus included here
from the start.

The static problem being defined from the equilibrium
Boltzmann measure[see Eq.(6)], deals not with the distri-
bution of the random force but with that of the random po-
tential

Vsu1,r1d ¯ Vsuk,rkd
c
= s− dkSskdsu1, . . . ,ukdddsr1, . . . ,rkd.

s65d

Since fsu,rd=−]uVsu,rd one has

Dsud = − R9sud, s66d

Sd
s3dsu1,u2,u3d = ]1]2]3S

s3dsu1,u2,u3d, s67d

and so on.
It is straighforward to derive the one loop FRG equation

in the Wilson scheme for these cumulants using the dynami-
cal formulation. They are conveniently expressed using res-
caled cumulants

Sd
skdfua1

, . . . ,uak
g = Ad

1−kLl
d+ksz−udS̃d

skdfua1
Ll

z, . . . ,uak
Ll

zg,

and read for the second and third cumulant

]lD̃sud = se − 2z + zu]udD̃sud + T̃lD̃9sud + 2S̃100s0,u,0d

− D̃8sud2 − D̃9sudfD̃sud − D̃s0dg, s68d

]lS̃su1,u2,u3d = s− 2 + 2e − 3z + zui]ui
dS̃su1,u2,u3d + 1

2T̃lfS̃200su1,u2,u3d + S̃020su1,u2,u3d + S̃002su1,u2,u3dg − 1
24D̃s0d

3fS̃200su1,u2,u3d + S̃020su1,u2,u3d + S̃002su1,u2,u3dg − 1
4D̃su1 − u2dS̃110su1,u2,u3d − 1

4D̃9su1 − u2dfS̃su1,u1,u3d

− S̃su1,u2,u3dg − 1
4D̃8su1 − u2dfS̃010su1,u2,u3d − S̃100su1,u2,u3d + S̃010su1,u1,u3d + S̃100su1,u1,u3dg , s69d

where we have denotedSd
s3d=S and we have suppressed ex-

plicitly the feedback of the fourth cumulantSd
s4d into the third

one. One can check that this gives exactly the derivatives
(67) of the one loop FRG equations for the static correlators
R and Ss3d displayed in Eqs.(6), (7) in Ref. [24]. These
relations(67) should indeed be preserved by RG at equilib-
rium.

As discussed in Ref.[23] when all arguments of these
functions are distinct and order one conventional scaling
holds. That is, at large scales for whichTl →0, the functions
S̃skd approach well-defined nonanalytic fixed point forms
S̃skd* . Moreover, these can be naively organized in ane=4
−d expansion in whichS̃skd* ,ek, kù3. Naively this would
allow the truncation of the hierarchy of FRG equations for
the S̃skd, neglecting feedback of thek.p cumulants with an
accuracy ofOsepd. However, the convergence to these values
is highly nonuniform as mentioned in Sec. II since at non-
zero temperature these functions remain analytic atu=0. A
detailed analysis of the static hierarchy of FRG equations
relating these cumulants revealed the existence of a thermal
boundary layer(TBL) of the form

D̃sud = D̃ p s0d − T̃l fsũd, s70d

ũ = ex̃u/T̃l , s71d

for ũ=Os1d, T̃l !e2 and f an analytic function withfsxd
,uxu at largex to match the cusp of the zero temperature
solution. For higher cumulants the very unconventional TBL
scaling implies that it is no longer legitimate to neglect the
feedback of higher cumulants(thenth cumulants gets a feed-
back from then andn+1 ones). Therefore, we are unable to
truncate and solve the hierarchy of FRG equations. Instead,
in Ref. [23] we argued for the consistency of a thermal
boundary layer ansatz(TBLA ), which for the force cumu-
lants reads

S̃d
skdsu1, . . .ukd = H fk + sx̃edk−2Tlsd

skdsũ1, . . . ,ũkd, k even,

sx̃edk−2Tlsd
skdsũ1, . . . ,ũkd, k odd,

s72d

wheresd are well defined functions of order one in the TBL
ũ,1. The set of(l-dependent) constants
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f2p = S̃d
s2pds0, . . . ,0d/sx̃ed2p, s73d

with f2=D̃s0d / sx̃ed2, have the meaning of the linearized ran-
dom force cumulants within the zero temperature Larkin de-
scription. As discussed in Ref.[23] the crucial difference
with the naive dimensional reduction result, where thef2p are
unrenormalized, is that they get feedback from the TBL func-
tions and acquire nontrivial asymptotic values.

The TBLA encodes a huge amount of physics—in par-
ticular, all the distributions of minima degeneracy respon-
sible for large thermal fluctuations in the droplet picture, as
detailed in Ref.[23]. For instance, averages such as Eq.(7)
can be estimated using the TBLA, the coefficientscn being in
principle determined by the functionssskd. This already non-
trivial structure must now be generalized to intrinsically dy-
namical quantities.

B. Dynamical hierarchy of kinetic coefficients

In a conventional dynamical renormalization group in the
MSR formalism a succession of individual terms are added
to the action corresponding to increasingly high frequency
kinetic coefficients, e.g., for a particle the Stokes drag, iner-
tial mass,… . For the disordered elastic manifold, however,
we recognize that these kinetic coefficients have a broad dis-
tribution characterized by an infinite set of cumulants and
cross correlations, which moreover can be nontrivial func-
tions of displacement field differences. The latter dependence
was neglected in the approximate treatment of Sec. III. The
need for treating it was already indicated in the ambiguities
in the diagrams of Fig. 3. Each of these cumulants and cross
correlations appears as a distinct interactionfunction in the
MSR action.

By symmetry(time translation and STS, statistical reflec-
tion, causality) alone, the set of all such interactions contrib-
uting to the effective action at zero temperature can be writ-
ten as

S= o
n=1

`

o
P=hpi

kj

E
rt1¯tn

iûrt1
¯ iûrtn

,

SP
sndsurt1

, ¯ ,urtn
dp
k=1

+`

p
i=1

n

s]ti
kurti

dpi
k
, s74d

where pi
kù0 and from STS symmetry,Ssu1+u, . . . ,un+ud

=Ssu1, . . . ,und are translationnally invariant, and statistical
reflection implies the full action is also invariant under
sû,ud→ s−û,−ud. The random force correlators correspond
to

SP=0
snd su1, . . . ,und = Sd

sndsu1, . . . ,und, s75d

whereP=0 above indicates the function withpi
k=0 for all i,

k. Other terms correspond to intrinsically dynamical cumu-
lants.

It is instructive to begin the characterization of such terms
at T=0 by listing all possible forms in order of increasing
numberm of time derivatives and order of cumulant(i.e., the
number of independent times which equals the number ofû

fields at T=0). Each term in Eq.(74) can be assignedm
=oi=1

n ok=1
+` kpi

k. For organisational purposes it is convenient to
rewrite the action of Eq.(74) in a schematic(but transparent)
notation, first expanding in number of cumulants:

S= iû1fk2 + Ss]1dgu1 + Sint, s76d

Sssd = h̄s+ Ds2 + ¯ , s77d

Sint = − 1
2iû1iû2S12 − 1

6iû1iû2iû3S123− ¯, s78d

with s= iv. Here the subscripts 1, 2,…, refer to different
times being independently integrated over in the action at
same space pointr (further integrated on). The S1,2,. . . are
then functions of theu1,u2, . . ., andtheir time derivatives.
We then expand each of these in increasing numberm of
time derivatives

S12 = Dsu12d + su̇1 − u̇2dGsu12d + u̇1u̇2Asu12d + su̇1
2 + u̇2

2dBsu12d

+ sü1 − ü2dCsu12d + ¯ , s79d

S123= Ssu1,u2,u3d + 1
3fu̇1Hsu1;u2,u3d + u̇2Hsu2;u3,u1d

+ u̇3Hsu3;u1,u2dg + u̇1u̇2Wsu1,u2;u3d + ¯ s80d

¯ . s81d

As discussed above, each new term in Eqs.(79), (81) corre-
sponds to statistical properties of the random kinetic coeffi-
cients and forces in a renormalized equation of motion, in
particular,

¯ + Dsu,rdü + hsu,rdu̇ = ¹2u + fsu,rd + gsu,rdu̇2 + ¯

+ zsr,td, s82d

with

Dsu,rd = D, hsu,rdfsu8,r8d
c

= − Gsu − u8ddsr − r8d, hsu,rdhsu8,r8d
c

= Asu − u8ddsr − r8d, s83d

gsu,rdfsu8,r8d
c
= Bsu − u8ddsr − r8d, fsu,rdDsu8,r8d

c
= Csu

− u8ddsr − r8d, s84d

hsu1,r1dfsu2,r2dfsu3,r3d
c
= 1

3Hsu1;u2,u3ddsr1 − r2ddsr2 − r3d,

s85d

hsu1,r1dhsu2,r2dfsu3,r3d
c
= 1

3Wsu1,u2;u3d. s86d

In the approximate treatment of Sec. III,hs2d hence corre-
sponds toAsud approximated asAs0d. Note that it is the
small argument behavior ofAsud (and its higher cumulant
analogs) that is related to the physically interesting second
(higher) relaxation time momenths2d,ktl2c shsnd,ktlncd.
Hence these relaxation times are encoded within the BL re-
gime of these functions. This was also apparent from the
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naïve renormalization ofh by D9s0d, also a BL quantity. We
will return to the problem of the dynamic BLs in
Gsud ,Asud , . . ., momentarily.

Although it is convenient as above for the purpose of
enumeratingterms in the dynamical action to first separate
by cumulant indexn and then by number of time derivatives
m, conceptually we analyze them in the opposite scheme,
i.e., collecting all terms of a givenm, and organizing these
afterward in order ofn. This scheme is clearly convenient
insofar as the first termsm=0d of each of theS12̄ n corre-
sponds to thenth term of the static cumulant hierarchy, so
that the set of terms withm=0 satisfies a closed hierarchy of
FRG equations independent of those withm.0. We now
demonstrate diagrammatically that, at zero temperature, a
similar property holds form.0. In particular, all terms of
any givenm will satisfy a closed containing only terms with
m8øm. Thus, one may imagine(dream of?) solving the FRG
equations up to levelm, then using this solution to complete
a closed set of FRG equations for levelm+1, and iteratively
solving for higher and higherm.

This closure relies on the rule of conservation of powers
of frequency, established in Sec. III. Recall that this occurs
because atT=0, the correlation function vanishes, and all
contractions take the form ofcausal response functions.
Thus no closed time loops can appear in any diagram. This
implies that internal time derivatives which appear in any
diagram appear as factors of frequency of some external leg
to which they are connected. In any case, this rule implies
that, since all terms in the action havemù0, terms with
m8.m can never reduce their number of time derivatives by
contraction with another vertex atT=0, and hence cannot
renormalizem vertices. This is true to all orders for diagrams
with any number of loops. The frequency conservation rule
implies in fact a more detailed result. If the quadratic terms
in Sssd sh ,D , . . .d are regarded themselves as coupling con-
stants[38] (with m=1,2, . . .), then each term in the FRG
equation for any quantity at levelm is a product of factors
for which the total frequency level(i.e.,omi for all termsi in
the product) is exactlym. Thus a static quantity(e.g.,D) can
renormalize a dynamic one(e.g.,G,h) only in combination
(i.e., multiplied by) another dynamic quantity, and so on.

One can also establish a set of rules to understand how
cumulants with differentn are connected in the FRG equa-
tions. At T=0, this process is highly constrained, since each
contraction involves one response function, which removes
oneû, it is straightforward to count the possible connections.
We will restrict our attention to one loop diagrams, anticipat-
ing future nonperturbative exploration using the exact RG
[23,39], in which only these appear(and in any case only
these are consistently treated in the Wilsonian scheme of this
paper). The counting is illustrated for such one loop dia-
grams in Figs. 6, 7. One readily sees that whenN vertices are
combined in this manner, the resulting vertex which is renor-
malized in the effective action contains a total number of
independent times(or û factors) n=oi=1

N ni −N, due to theN
response functions appearing in the loop.

With these rules in mind, we can describe the structure of
the FRG hierarchy as far as the feeding of terms of a given
m, n into otherm8 ,n8. We note symbolically bySm

n the terms

with n response fields andm time derivatives. The termh̄ is
S1

1, the response function is the quadratic part ofSm
1 [we note

R−1=quadsSm
1 d] and the cumulantshsnd are included inSn

n.
From the above discussion, neglecting rescaling terms, the
structure of the FRG equations reads

dSm
snd = Sm

sn+1d + o
m8=0

m

o
n8=1

n+1

Sm8
sn8dSm−m8

sn+2−n8d

+ o
m8+m9øm

o
n8+n9øn+2

Sm8
sn8dSm9

sn9dSm−m8−m9
sn+3−n8−n9d + ¯.

s87d

It is straightforward to see that this series contains a finite
number of terms for any givenm, n. Let us suppose that an
N-loop term exists, such that each vertex making it up hasni
time integrations. Suppose of theseN vertices,ni .1 for N8
of them andni =1 for the remainingN−N8. Thenn=oi=1

N ni

−N=N−N8+oi=1
N8 ni −N=oi=1

N8 sni −1d. Hence at mostN8øn.
Now the remainingN−N8ùN−n vertices have only one
time integration. Since there are no allowed local terms with-

FIG. 6. Compact notation for a generic vertex atT=0.

FIG. 7. One loop diagrams which correct the effective action at
T=0: the internal lines contain the full response function and the
graphs are 1P irreducible. Graph(a) is a “tadpole.” Graphs(b) and
(c) (and higher orders) correct terms withnù1,2,3,respectively.
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out time derivatives, these must each havemi ù1, i.e., m
ùN−n. Turning this around,Nøm+n, so that the series of
one loop diagrams terminates at at mostsm+ndth order.
Clearly from Eq.(87), each order contains a finite number of
terms, so that the one loop FRG equations are finite.

1. Terms proportional to frequency m=1

We will now examine levelm=1 andm=2 of the hierar-
chy. Form=1 we will restrict to study the FRG equation for
terms withnø2 for which we need terms up ton=3:

S1
s1−3d =E

rt
h̄iûrtu̇rt −

1

2
E

rt1t2

iûrt1
iûrt2

su̇rt1
− u̇rt2

dGsurt1
− urt2

d

−
1

6
E

rt1t2t3

iûrt1
iûrt2

iûrt3
u̇rt1

Hsurt1
,urt2

,urt3
d, s88d

whereGs−ud=−Gsud.
The renormalization ofh̄ andG is determined by a stan-

dard if cumbersome one loop calculation performed in the
Appendix F. The corresponding graphs are represented in
Figs. 8, 9. From dimensional analysis and the structural form
of the FRG equation(87) we see that andG andH as single
frequencym=1 terms will be fed byOsh̄D2d and Osh̄D3d,
respectively. Hence, given the rapid growth ofh̄ with scale,
we expect these functions to be at least growing ash̄ with
scale. We thus defined rescaled functions

Glsud = h̄l

Ll
2−dezl

Ad
G̃sue−zld, s89d

Hlsu1,u2,u3d = h̄l

Ll
4−2de2zl

Ad
2 H̃su1e

−zl,u2e
−zl,u3e

−zld,

in terms of which one finds the flow equation(40) for h̄ and

G̃sud:

]lh̄ = fG̃8s0d − D̃9s0dgh̄, s90d

]lG̃ = s− 2 +e − zdG̃ + zu]uG̃ − 2D̃9G̃ + fD̃s0d − D̃gG̃9

− 3D̃8G̃8 − G̃8s0dG̃ − G̃8s0dD̃8 + D̃8f2D̃9s0d + 2D̃9g

+ S̃110s0,0,ud + 1
3fH̃010su,0,0d − 2H̃001s0,u,0d

− H̃100s0,u,0dg. s91d

Because of the above rescaling(89) no explicit h̄ appear in
Eq. (91).

SinceG̃8s0d appears on the same footing asD̃9s0d,1/T̃l

in Eq. (90) it is natural to expect it to grow unboundedly with
scale in the same fashion. Indeed inspection of Eq.(91) re-

veals thatG̃ is fed by a term explicitly proportional toD̃9s0d
which can consistently be balanced by theG̃8s0d term ap-
pearing in the first line of the same equation. Therefore we

are led to expect thatG̃ itself, similar toD̃, should exhibit a
thermal boundary layer and the effect of temperature will be
essential in understanding the structure properly. We will
come back after taking a brief look at them=2 terms.

2. Terms proportional to square frequency m=2

The m=2 terms, restricting tosnø2d-th order cumulant
read

S2
s1−2d =E

rt
iûrtDürt −

1

2
E

rt1t2

iûrt1
iûrt2

fu̇rt1
u̇rt2

Asurt1
− urt2

d

+ su̇rt1
2 + u̇rt2

2 dBsurt1
− urt2

d + sürt1
− ürt2

dCsurt1
− urt2

dg.

s92d

The renormalization ofD and of the functionsA, B, andC
via a one loop calculation is performed in the appendixes. It
turns out to be convenient to define

FIG. 8. Shown is theG vertex (top image with no alphabetic
label) and diagrammatic corrections toh̄. Graphs(a)–(d) are con-
tributions from tadpoles of theG vertex[note that(a) and(c) cancel
by the same mechanism as dimensional reduction, and that(d) van-
ishes upon integration by parts on internal line]. Graph(e) is the
contribution fromh̄D.

FIG. 9. Corrections toG.
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B1sud = Bsud − 1
2C8sud, s93d

which simplifies the equations, the physics being explained
below. We define rescaled quantities as follows:

D = Ll
−2D̄, s94d

Asud =
Ll

−d

Ad
Ãsue−zld, B1sud =

Ll
−d

Ad
B̃1sue−zld,

Csud =
Ll

−dezl

Ad
C̃sue−zld, s95d

Wlsu1,u2,u3d = h̄l
2Ll

2−2dezl

Ad
2 W̃su1e

−zl,u2e
−zl,u3e

−zld,

and one finds

]lD̃ = f− 2 − D̃9s0dgD̃ − Ãs0d + C̃8s0d

− h̄2f2Ḡ8s0d − D̃9s0dg, s96d

together with the FRG coupled flow equations forÃsud,
B̃sud, andC̃sud which read

]lÃ = f− d + zu]u − 2D̃9s0d − 4D̃9gÃ − 4D̃8Ã8

+ fD̃s0d − D̃gÃ9 + h̄2f2G̃8s0dG̃8 + 5G̃82 − 4G̃8D̃9s0d

− 8G̃8D̃9 + 2D̃92 + 4G̃G̃9 − 4D̃8G̃9g, s97d

]lB̃1 = h− d + zu]u − 3fD̃9 + D̃9s0dgjB̃1 + 3D̃9B̃1s0d − 4D̃8B̃18

+ fD̃s0d − D̃gB̃18 + Ãs0dD̃9 + h̄2f− G̃8s0dG̃8 − G̃82

− G̃G̃9 + 2G̃8D̃9s0d + G̃8s0dD̃9 + G̃8D̃9 + D̃8G̃9

− D̃9s0dD̃9g, s98d

]lC̃ = f− z − d + zu]u − D̃9s0d − 2D̃9gC̃ + D̃8Ãs0d − D̃8C̃8s0d

− 3D̃8C̃8 + fD̃s0d − D̃gC̃9 + 2D̃D̃8fD̃9s0d + D̃9g

+ h̄2f− 2G̃G̃8s0d + 4D̃8G̃8s0d − 2G̃G̃8 + 2D̃8G̃8

+ 2G̃D̃9s0d − 3D̃8D̃9s0d + 2G̃D̃9 − 2D̃8D̃9g . s99d

From these equations we expect exponential growth ofD̃,

Ã, B̃, C̃ at least as fast ash̄2 due to the feeding terms. We
expect from the considerations of Sec. III that the growth is
actually faster. Indeed considering theA flow equation at the

origin gives]lÃs0d=−6D̃9s0dÃs0d keeping the largest terms

of order 1/T̃l and neglecting feeding terms. Note the similar-
ity to the result of Sec. III. While we expect this qualitative
behavior, the precise nature of the growth is more subtle due
to the fact that at nonzero temperatureAs0d no longer satis-
fies a closed equation. We will discuss this in more details
below.

Let us close this section by noticing that all nontrivial
terms in the right-hand side of the above set of FRG equa-
tions (b functions) for G, A, B, and C cancel when one
chooses

G̃sud = D̃8sud, s100d

Ãsud = − h̄2D̃9sud, s101d

C̃ = D̃D̃8sud, s102d

B̃1 = D̃1
2D̃9sud, s103d

H̃su1,u2,u3d = 3S̃100su1,u2,u3d, s104d

W̃su1,u2,u3d = − 3S̃110su1,u2,u3d, s105d

and furthermore the flow of the kinetic coefficients simplify
to

]lh̄ = 0, s106d

]lD = 0. s107d

This remarkable property, which serves as a useful check on
the RG equations, can be understood in terms of a simple
integrable model which is studied in the Appendix G(which
has very different physics from the one studied here).

C. Dynamical thermal boundary layer

1. Dynamical action at non-zero temperature and FDT

At T.0 two new effects must be taken into account not
present atT=0. First, in addition to the kinetic coefficients
studied above one must take into account a variety of ther-
mal noise terms. In the dynamical action this corresponds to
terms with two or moreû field having the same time argu-
ment. Second, new thermal contractions are possible using
the nonzero correlation functionkuul of the Gaussian theory.
We first focus on the former, and discuss the additional con-
tractions at the end of this subsubsection. The action takes
the general form

S= o
n=1

`

o
P=hpi

kj,R=hri
kj

E
rt1¯tn

iûrt1
¯ iûrtn

SP,R
snd

3surt1
, . . . ,urtn

dp
k=0

+`

p
i=1

n

s]ti
kiûrt i

dri
k
s]ti

kurti
dpi

k
, s108d

with pi
0=0 and ther i

kù0 are integers. TheSP,R
snd are transla-

tionnally invariant functions. Compared to theT=0 action it
has additional powers ofûi and possibly their time deriva-
tives (such vertices are shown in Fig. 10). There is a tem-
perature homogeneity degrees=okoi r i

k such that the term is
,Ts. The standard thermal noise corresponds toSP=0,R

s1d

=−hT, with r i
k=2dk0di1.
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In order to maintain the fluctuation dissipation theorem
(FDT) there are relations between these vertices. A useful
symmetry which constrains the allowed form of these terms
is

iûrt → iûr,−t − lru̇r,−t, s109d

urt → ur,−t, s110d

[we meanu̇−t=u8s−td]. For actions with no explicit time de-
pendence, such as considered here, one can then later make a
change of variablest→−t in integrals over times. We apply
this to the bare action(11), (12). Consider first the infinitesi-
mal variation of the interaction term

dSint = −E
r
lrE

t1,t2

iûrt1
u̇rt2

Dsurt1
− urt2

d + Osl2d

= −E
r
lrE

t1,t2

iûrt1
]t2

R8surt1
− urt2

d + Osl2d,

s111d

usingDsud=−R9sud, a consequence of potentiality. This inte-
grates to a boundary term which is a function only of the
coordinatesu and corresponds to the energy difference be-
tween the initial and final times(see below). Hence the in-
teraction term is invariant for an arbitrary(r-dependent) lr.
Unfortunately, this large symmetry is quadratically broken
by Eq. (11). First, the variation of the elastic term vanishes
(up to boundary terms) only for spatially constantlr =l.
Thus the full action forh=0 has a continuous globall sym-
metry (109). This can be used, e.g., to put constraints on the
terms appearing in the FRG equation order by order inh
[41]. More importantly, the remaining terms in the action are
only invariant under a discrete transformation, specifically
Eq. (109), with

l =
1

T
. s112d

Note that they are, however,exactly invariant (no boundary
term).

Having established the invariance of the bare model under
the symmetry(112) we know that it should be preserved
under renormalization. We must thus understand the conse-
quences of this symmetry for a more general effective action.

The relation to FDT is apparent since, performing the trans-
formation in the path integral defining the response function
one finds

Rt2−t1
= kiût1

ut2
l, s113d

=ksiû−t1
− u̇−t1

du̇−t2
l = Rt1−t2

+
Ċt1−t2

T
, s114d

i.e., the FDT relation for two point functions. The same is
obtained from considering the action of the symmetry(112)
on a general form(i.e., nonlocal in time) for the quadratic
part of the effective action functional[42,50].

We now discuss more precisely the conditions on the
boundary terms which relate this symmetry to the FDT. This
is simplest to see first in the context of the theory before
averaging over disorder. Let us define the Ito path integral

Zsuf,tf ;ui,tid =E
ustid=ui

ustfd=uf

DûDue−Sv, s115d

E dufZsuf,tf ;ui,tid = 1, s116d

the (normalized) conditional probability to find the system in
stateuf at timetf given that it is in stateui at timeti. HereSV
is the MSR dynamical action in a given disorder realization.
By construction the Boltzmann measure is the stationary dis-
tribution for thisZsuf ,tf ;ui ,tid regarded as an evolution op-
erator

E duf Zsuf,tf ;ui,tide−fHsuid−Hsufdg/T = 1. s117d

Note that if under the transformation aboveSV→SV+dSV
wheredSV=dSVfui ,ufg is a function only ofui anduf (bound-
ary term) one has

Zsuf,tf ;ui,tid = Zsui,tf ;uf,tide−dSV, s118d

since t is changed to −t and thus boundary timesti and tf
must be interchanged. Interchangingui and uf in Eq. (117)
and using Eq.(118) the normalization condition(116) is
found to hold only if

dSVfui,ufg =
1

T
fHsutf

d − Hsuti
dg. s119d

If, on the other hand,dSV depends also on the time deriva-
tives at the boundary, then the FDT may or may not be
satisfied depending on the precise nature of the boundary
terms[41].

Upon averaging over disordereSV+dSV
V
=eS+dS, the shiftdS

obtained after transformation on the disorder averaged MSR
action. It is readily seen that for the bare action,dS is a sum
of a single time integral cross correlation boundary term(and
one response field) and a term with no time integral repre-
senting the second cumulant of the random portentialVsud.
More generally, if one performs the transformation(109) on
the coarse grained model, one must obtain adS which is a

FIG. 10. Compact notation for a generic vertex atT.0.
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sum of boundary terms, each containing less response fields
than time integrals. Thenth cumulant of the renormalized
static disorder can then be retrieved from the corresponding
boundary term with no time integral and 1/Tn factor.

We are now prepared to discuss one how can construct the
effective action at finite temperature taking into account the
constraints from the FDT. It is useful to note that from the
fundamental fieldsiû and u two linear combinations trans-
form simply under the symmetry(112)

u̇ → − u̇, s120d

Y = 2Tiû − u̇ → 2Tiû − u̇. s121d

Terms in the effective action which are exactly invariant(i.e.,
whose variation do not produce any boundary terms) must
involve û only in the combination 2Tiû− u̇. Examples will be
constructed below.

It is clear from these considerations that nonzeroT terms
can have time derivatives replaced byTû. Therefore it is
natural to group terms which formerly(at T=0) were orga-
nized by the frequency powerm by the more general index

M = Nû − n + m, s122d

whereNû is the number ofû fields appearing in the term and
n the number of independent times, as before. Terms with a
given M , n can mix under the FDT transformation(112).

Let us start withM =1 andn=2. The only possible com-
bination of the above invariants is, using symbolic notations
as above:

ST,1
s2d =

s2Tiû1 − u̇1d2 − u̇1
2

8T
iû2Gsu1 − u2d + s1 ↔ 2d

= −
1

2
iû1iû2fsu̇1 − u̇2d − Tsiû1 − iû2dgGsu1 − u2d,

s123d

recovering the zero temperatureG term together with a non-
zero T partner term. Note that at timet1 we have used the
invariant combinationY2, taking care to remove the piece
proportional tou̇1

2 since there must be at least one response
field at every time. This is not possible whenever there is an
odd total number of fieldsu̇ and û at any particular time.
Thus theiû2 above cannot be embedded in a term exactly
invariant. HenceGsud must be a total derivative and the
above term gives a nonvanishing boundary variation under
the transformation(112). This term can also be understood
before disorder averaging. It corresponds to replacing the
naive zeroT dynamical termhsu,rdiûu̇ corresponding to the
damping in Eq.(82) by the invariant combination

E
rt

hsurt,rd
fu̇rt

2 − s2Tiûrt − u̇rtd2g
4T

. s124d

Note that expanding out the factor in this term demonstrates
that includingu dependence in the damping coefficient has
given rise to a white thermal noise which[for Dsu,rd
=gsu,rd=0] hasu-dependent variance

kzsr,tdzsr8,t8dl = 2hsu,rdTdst − t8ddsr − r8d. s125d

The fact thatGsud is a total derivative then follows simply
from its interpretation as a cross cumulant ofhsu,rd and the
conservative random pinning forcefsu,rd. Based on this rea-
soning it is clear that the functionBsud andCsud must also be
total derivatives.

Note that the finiteT partner of theG term is generated in
parallel to it from graphs of the form(e) in Fig. 11. One
easily checks that it corrects the temperature term bydhTûû
wheredh corresponds to the correction(90) from G8s0d so
as to maintain FDT relation.

Let us now examine the termsM =2 andn=2. One can
write the possible terms in a way which makes apparent the
invariants:

ST,2
s2d = −

1

2

fu̇1
2 − s2Tiû1 − u̇1d2g

4T

fu̇2
2 − s2Tiû2 − u̇2d2g

4T
Asu1 − u2d,

s126d

+
s2Tiû1 − u̇1du̇1

2 − s2Tiû1 − u̇1d3

8T
iû2B1su1 − u2d + s1 ↔ 2d

s127d

−
s2Tiû1 − u̇1du̇1

2

4T
iû2

C8su1 − u2d
2

−
s2Tiû1 − u̇1dü1

4T
iû2Csu1 − u2d + s1 ↔ 2d, s128d

in a way such that unwanted terms(with no û field associated
to a time) cancel explicitly, apart from the last terms where
they combine to gives rise to a boundary term1

2]t1
fu̇1

2Csu1

−u2dg. Accordingly, the B has been splitted intoBsud
=B1sud+C8sud /2. The functionB1sud must be a total deriva-
tive (see above) and its variation yields a boundary term.
However, the invariance of the part cubic in the field in the

FIG. 11. One loop diagrams which correct the effective action at
T.0 (in addition to the one forT=0): the internal lines contain the
full response function and the graphs are 1P irreducible.(a), (b) The
tadpoles using the full correlation function[the only possible ones
as (d) should not be counted as it is a two loop diagram]. (c) The
generic new one loop diagram atT.0 with two vertices.(e) One
example of expanding the full correlation.
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B1 term is exact, which can be traced to an exactly invariant
term in the unaveraged dynamical action

s2Tiûrt − u̇rtdu̇rt
2 − s2Tiûrt − u̇rtd3

4T
gsurt,rd. s129d

Expanding all terms above one can write explicitly

ST,2
s2d = ST=0,2

s2d +
T

2
fsiû1d2iû2u̇2 + siû2d2iû1u̇1gAsu1 − u2d

−
T2

2
siû1d2siû2d2Asu1 − u2d s130d

+
3

2
Tfsiû1d2iû2u̇1 + siû2d2iû1u̇2gB1su1 − u2d

− T2fsiû1d3iû2 + iû1siû2d3gB1su1 − u2d. s131d

Note thatC does not give any bulk contribution at nonzero
temperature. The FDT constraint only requires some bound-
ary noise term forC. This is becauseC alone, withA=B1
=0 corresponds to a conservative dynamics[41].

These considerations show that to the order studied the
T.0 dynamical action is fully specified by theT=0 action
and the FDT constraints. Thus we do not need to introduce at
this stage any new operator associated to finiteT.

Having established that we are working with an appropri-
ate action(and hence have not neglected any pertinent cou-
pling constants/functions), we turn briefly to the effects of
additional thermal contractions upon the FRG equations. Up
to this point, the only such contractions we have included are

the “diffusion” terms(T̃lD̃9, etc.) in the FRG equations for
each coupling function. It appears natural to neglect most
effects of temperature since it is an irrelevant variable under
the FRG, while clearly these diffusion terms are crucial,
since they are necessary to stabilize the boundary layer.
Within this treatment, the zero temperature rule of conserva-
tion of powers of frequency still holds. More generally, how-
ever, one can a priori perform thermal contractions that feed
downward(i.e., reduce the number of time derivatives) in the
frequency hierarchy, in particular by thermally contracting
fields containing time derivatives. For some simple such con-
tractions, a preliminary calculation shows that a cancellation
in fact occurs amongst the different “partners” required by
the FDT, eliminating the unwanted mixing. We do not have,
however, a general argument for such a mechanism of can-
cellation. Due to the complications of such a more general
analysis, we will, however, proceed assuming this is gener-
ally true. We comment briefly further on this in the conclu-
sion.

D. Dynamical boundary layer analysis: terms associated with
averaged relaxation time

Having established that to this order no new terms arise
due to temperature we now attempt to study the structure of
the thermal boundary layer in the operators studied so far.
We consider the levelm=1 in some detail. We add the effect
of temperature to lowest naive order which is to add to the

right-hand side of Eq.(91) the termT̃G̃9sud, originating from
the simple tadpole contraction of theG vertex.

From examination of this equation we expect thatG̃sud
supports a thermal boundary layer form foru, T̃l /«

G̃sud = ex̃gS ex̃u

T̃l

D , s132d

with gs0d=0, gsxd an analytic function atx=0, odd and posi-
tive for x.0. It should match the fixed point form outside

the boundary layer. Foru,Os1d andT̃l !« we expectD̃sud,
G̃sud!D̃9s0d,G̃8s0d,«2x̃2/ T̃l. Thus in the outer region

only three out of the several terms involvingD̃ and G̃ are
non-negligible. For now we neglect feeding from third cu-
mulants functionsS and H, we return to them below. The

fixed point forḠsud outside the TBL is then trivially

Ḡ*sud = S2D̃9s0d

G̃8s0d
− 1DD̃8*sud. s133d

Since at small argumentD̃8*sud=−«x̃ it follows that gsxd
→g+`=1−2D̃9s0d /G̃8s0d a constant, for largex. Using the

TBL form to evaluateG̃8s0d yields

g+` = 1 +
2

g8s0d
. s134d

To analyze the boundary layer equation, we use the form

(70) for D̃ and similar forms for the third cumulant functions

(72) for S̃ and

H̃su1,u2,u3d = sex̃d2hsũ1,ũ2,ũ3d, s135d

ũ =
ex̃u

T̃l

. s136d

The TBL equation forgsxd is then found to be

0 = 2f9g + 3g8f8 + g8s0dsf8 − gd + g9s1 + fd + 2f8ff9s0d + f9g
s137d

+ s110s0,0,ũd + 1
3fh010sũ,0,0d − 2h001s0,ũ,0d − h100s0,ũ,0dg,

s138d

wheressu1,u2,u3d=sd
s3dsu1,u2,u3d, all these terms being mul-

tiplied by «3x / T̃l while the terms originating from rescaling
are proportional to«. This form will thus hold at scales such

that T̃l !«2.
For given functionsf ,s,h this equation is an eigenvalue

problem for determiningg8s0d. This can be seen since for
large x the linear problem has one exponentially growing
solution, in addition to the one matching the outer solution
which converges to a constant. Thusg8s0d must be tuned to
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select that solution. We illustrate this behavior in the ap-
proximation of neglecting all third cumulant functions. Then
we recall thatf satisfies

f82 + f9s1 + fd = 1, s139d

whose solution isfsxd=Î1+x2−1. Since, as discussed earlier
G is a total derivative, it is possible to integrate the boundary
layer equation once, and definingg=−f8+g8 one obtains

s1 + fdg9 + 2f8g8 − g8s0dg + s2f − 1df1 + g8s0dg = 0,

with gs0d=g8s0d=0. One interesting solution but unrelated
to the physics of interest here isg=0, g8s0d=−1, i.e., g
=−f8. It corresponds to an integrable set of models with a
single exponential relaxation, which exactly obey the full
FRG equations to one loop, and is studied in Appendix. A
shooting procedure gives a solutiongsxd satisfying the
proper boundary conditions withg8s0d=2.646±0.001.

Thus we find that the growth ofhl is determined by

]lhl =
e2x̃2

T̃l

ff9s0d + g8s0dghl s140d

yielding

hl , expSas1d
b̃eul

u
D . s141d

Clearly as1d=3.646 is a nontrivial number.

E. Terms associated with second moment of relaxation time

We now turn to the consideration of terms withm=2. As
emphasized in Sec. II the principal quantities of interest are
the cumulants of the friction, the second one being embodied
in Asud. The quantitiesB1 and C also appear at this order,
complicating the analysis. Since these embody somewhat
different physics we will focus initially onAsud which fortu-
nately satisfies equation(97) which is independent ofB1 and
C.

We add the effect of temperature to lowest naive order
which is to add to the right-hand side of Eqs.(97)–(99) the

termsT̃Ã9sud, T̃B̃19sud, T̃C̃9sud, respectively. These originate
from the simple tadpole contractions.

1. Second moment of relaxation time A„u…

In Sec. III we pointed out the rapid divergence of the
moments of the friction(relaxation time) h̄ ,hs2d=As0d , . . .

driven by the low-temperature divergence ofD̃9s0d. In doing
so we neglected all functional dependence[such asAsud]. In
the previous subsection we reconsidered the growth of the
average frictionh̄, which clearly does not itself has any func-
tional dependence. Instead the deviations of its growth from
the prediction of Sec. III arise from a secondary mechanism

of the feedback ofG̃8s0d into h̄. Physically it corresponds to
the cross correlationG of the friction hsu,rd with the ran-
dom forcefsu,rd producing an increased growth ofh̄.

We would now like to reconsider the growth of the second
momentAs0d=hs2d including functional dependence. In this

case already the leading effect of enhancement due to the

divergence ofD̃9s0d is nontrivial. Thus we will focus on it
here primarily ignoring secondary effects of cross correla-
tions between the random friction coefficient and the random
force. In general these cross correlation effects enter the flow
of A throughG, H, andW defined in Eq.(81). Terms involv-
ing H and W have already been dropped in Eq.(97) for A.
We will initially keep terms involvingG in Eq. (97) but will
drop them at a later stage of the analysis. It is not clear at this
stage whether keeping these terms without simultaneously
including the ones due toH andW would be consistent.

We then note thatÃsud satisfies a closed equation once

G̃sud is known. We first consider the nature of its solution for
u,1 outside the TBL. Doing so one notes the presence of

several large terms proportional toD̃9s0d, G̃8s0d. Balancing
these large terms, we obtain the solution outside the TBL:

Alsud , h̄l
2g`G̃*8 = − h̄l

2g`
2D̃*9, s142d

whereg` was defined above. Note that, as was the case forG̃
the convergence is very rapid due to the homogeneous part

]A=−2G̃8s0dA. The important feature of this result is that
Asud is of orderh̄l

2 outside the TBL.
We are going to search for a TBL solution forA which

grows faster:

Ãsud = h̄l
le2x̃2

T
hS ex̃u

T̃l

D , s143d

with l.2. In order to match the above solution outside the
TBL one should havehs`d=0. The TBL equation forh then
reads

h− lff9s0d + g8s0dg + 2f9s0d + 4f9jh + s1 + fdh9 + 4f8h8 = 0.

s144d

Due to the presumed faster growth ofÃ than h̄l
2 sl.2d the

feeding terms in Eq.(97) are negligible and have been
dropped. As discussed above, since our principal interest is
to compare the growth of the second relaxation moment pa-
rametrized byAs0d relative to the growth of the meanh̄, to
be consistent we drop the analogous renormalization ofh̄ by

G̃8s0d, i.e., setg8s0d=0 in Eq.(144). Numerical solution then
yields

l = 2.64. s145d

The analysis is thus consistent since we findl.2. To the
order considered we therefore have

h2
l , h̄l

2.64
¯ @ h̄l

2. s146d

This gives, in the present approximationas2d /as1d=2.64.
As seen in the previous subsection we expect bothas2d and
as1d to be both increased by inclusion of the effect of cross-
correlations of friction and random force.
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2. Growth of other O„v2
… kinetic coefficients D,B ,C

Due to the feedback ofAs0d into D we expectD to grow
at least as fast ash̄l

l. In the simplest scenario, indeed, allv2

quantities would scale the same in the same manner. How-
ever, we see no general reason why this need be the case.
Indeed, examination ofB1 andC using the same truncation
scheme as forA, shows that they grow faster. We sketch this

analysis here. Consider firstC̃sud, which also feeds into the

inertial massD. We assumeC̄, h̄m, with m.l.2. With

such growth ofC̃, the feedback ofC̃8s0d into D̃ will over-

whelm all other feeding terms, and we expectD̃=h̄mD̄, with

D̄ scale independent. It is then natural to defineC̃sud
=−D̃C̄sud. Equation(96) becomes

]lD̄ = h− 2 +mfG̃8s0d − D̃9s0dg − C̄8s0djD̄. s147d

Thus to leading order in 1/T̃l, one needs

C̄s0d = mfG̃8s0d − D̃9s0dg. s148d

Using the above forms,C̄ satisfies

]C̄ = h2 − d + z]u − D̃9s0d + mfD̃9s0d − G̃8s0dg − 2D̃9jC̄

+ T̃lC̄9 − D̃8C̄8s0d − 3D̃8C̄8 + fD̃s0d − D̃gC̄9 − 2D̃8D̃9s0d

− 2D̃8D̃9, s149d

to leading order, i.e., dropping terms,h̄2−m ,h̄l−m, and ne-
glecting feedback from higher cumulants as before. As forG
andA, the outer solution foru,Os1d is readily found equat-

ing the large terms,D̃9s0d+C̄8s0d,1/T̃l:

C̄ ,
C̃8s0d + 2D̃9s0d

sm − 1dD̃9s0d − mG̃8s0d
D̃8sud u , Os1d. s150d

As before, for smallu we make a TBL ansatz,

C̄sud = ex̃csex̃u/T̃ld, s151d

which yields an equation very similar to Eq.(138) for gsxd:

s1 + fdc9 + 3f8c8 + hf9s0d − mff9s0d + g8s0dg + 2f9jc

− f8f2f9s0d − c8s0d + 2f9g = 0. s152d

We require, to match Eq.(150), that c goes at a constant at
large argument, andcs0d=0 sincec is an odd function. Fur-
thermore, from Eq.(148), we havec8s0d=−mff9s0d+g8s0dg.
This formulates an eigenvalue problem form. As above, to
solve, we use the(approximate) form for fsxd in Eq. (139)
and, for consistency as before setg8s0d=0. A shooting pro-
cedure givesm=3.377, indeed greater thanl as required for
consistency. In summary we find the growth of the kinetic
coefficients

C̃sud , D̃ , h̄l
3.377. s153d

Finally, we discuss the growth ofB̃1. Since it is fed by

Ãs0d, it must grow at least as fast ash̄l, so all other feeding
terms on the last line of Eq.(98) are certainly negligible.

Remarkably, even in the presence of the thermalT̃lB̃19 term
an asymptotically(for largel) exact solution can be found. In

particular, one finds that the homogeneous(in B̃1) part of the

B̃1 equation has an exact eigenfunction which is just

B̃1su, ld=B̃1sld, a constant independent ofu. This turns out to
be the most unstable eigenfunction, with eigenvalue −d

−3D̃9s0d. The exponential growth of this unstable eigenfunc-

tion is faster than that ofÃs0d, and hence dominates the flow
at large scales. Hence, writing this relative in terms ofh̄l
[neglecting theg8s0d renormalization ofh̄ as before], one
finds

B̃1sud = B̃1s0dh̄l
3. s154d

V. CONCLUSION

We have through a series of successively better approxi-
mations arrived at a description of the growth of the mo-
ments of relaxation times(friction coefficient) encoded as
eigenvalues of functional FRG equations. This final stage of
analysis was carried out only for the mean and variance—the
extension to higher moments is a formidable technical chal-
lenge. Nevertheless, already at this level we have observed
how these functional eigenvalue problems provide a mecha-
nism for describing a broad but nontrivial(i.e., not log nor-
mal) distribution of time scales. This is at variance with nu-
merous other existing examples of systems exhibiting
simpler log-normal tails which can be obtained from simpler
nonlinear sigma model diagrammatic calculations, such as in
disordered conductors[51]. A similar log-normal tail was
indeed obtained in Sec. III from an approximate truncation
of the FRG equation. A rather strong physical difference
from the aforementioned quantum diffusion problem is the
rapid exponential scale dependence of the relaxation times
for u.0, very different from the logarithmic dependence of
two-dimensional weak localization corrections. It is an open
question whether some less trivial distribution might arise at
the metal-insulator transition ind.2 and whether similar
functional renormalization ideas might be useful in this con-
text.

Many outstanding issues and extensions remain. Of these,
the most fundamental are germane to both the dynamics and
the statics[23,24]. In particular the very basic problem of
perturbative control of the theory(most interestingly in thee
expansion) remains unsolved. This question, and the associ-
ated matching problem of relating, e.g., random force quan-
tities such as thefk in Eq. (72) defined deep within the
boundary layer atu=0 to the zero-temperature ones occur-
ring far outside foru,Os1d are better addressed in the sim-
pler context of the statics. We will refrain from commenting
further upon them here.

Of the problems specific to the dynamics, perhaps most
important is a systematic treatment of all thermal terms in
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the FRG. We have begun this program by classifying all
operators associated with “thermal noises” in the effective
action(Sec. IV C 1) consistent with the FDT. However, up to
this point we have included the effects of nonzero tempera-

ture only through the leading “diffusion” terms(T̃lD̃9, etc.) in
the FRG equations for each coupling function. As discussed
in Sec. IV C 1, while this assumption is natural, we do not at
this stage have a general justification for it. The importance
of additional thermal contractions thus remains an important
issue for further investigation.

Once these basic remaining issues in the FRG formulation
are resolved, the present methods offer the opportunity to
explore numerous physical problems. Obviously, equilibrium
response and correlation functions are of considerable inter-
est. Perhaps the approximate techniques of Sec. III(and Ap-
pendix E) may have an extension to the full functional de-
scription. It will also be valuable to reinvestigate the
response to a uniform applied force in the creep regime[22]
in light of the full dynamical structure of the thermal bound-
ary layer exposed here. Applications of these ideas to non-
equilibrium response and aging is also tantalizing. Similar
approaches should be applicable to quantum problems in the
Keldysh formalism. These and other applications of the
present formulation certainly provide a broad scope for fu-
ture progress in understanding glassy dynamics.
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APPENDIX A: SINGLE TIME SCALE
CALCULATIONS—EQUILIBRIUM

1. Analytical results for the equilibrium response function

It is interesting to observe how the twoputativescaling
regimes described in Sec. II arise in a detailed calculation of
the mean response function. To do so, we develop an FRG
scheme to calculate directly the response function at arbitrary
v, k within the scaling regimes described above. It is neces-
sary to follow the flow of the full wave vector and frequency
dependence of the “kinetic” part of the MSR action. We
therefore generalize the form in Eq.(11) to

S0
l fu,ûg =E

r,r8,tt8
iûrtsRl

−1drt,r8t8ur8t8 − hTE
r,t

siûrtdsiûrtd,

sA1d

where, in a slight abuse of notation, we have denoted the
quadratic MSR kernel byR−1. Using Eq.(A1), we extend the
FRG analysis leading to Eq.(15) to derive an RG equation
for the response function. As before, the strategy is to inte-
grate out spatial Fourier modesL.k.Le−l, but now keep-
ing the explicit time dependence. At this stage, we willnot
assume time-translational invariance, though we will special-
ize to this at a later stage. The FRG equation forRl

−1 is

]lRq,l
−1st,t8d = − GlLl

4SRLl,l
st,t8d − dt,t8E

ti

t

dt9RLl,l
st,t9dD ,

sA2d

whereti is an initial time at which the system is prepared in
some as yet unspecified state(or distribution of states).
Equation(A2) is obtained formally by computing the correc-
tion to the (inverse) response function upon integrating out
the modes in the shell, and using definitions(15) and (21).
We perform this integration perturbatively inD (to first or-
der), which gives the lowest order term ine.

At the end we want the true response functionRqst ,t8d. It
will be obtained by integrating the flow froml =0 with the
initial condition

Rq,l=0st,t8d = e−q2st−t8dust − t8d, sA3d

setting h̄0=1 for convenience, up to the scalel* such that
Le−l* =q8:

Rqst,t8d = Rq,l=lnsL/qdst,t8d. sA4d

This amounts to neglect contributions coming from the
modesk,q, as is usually done in the RG. These are exam-
ined below.

Although the initial condition in Eq.(A3) is time-
translationally invariant(TTI), the solution of the RG equa-
tion does not in general remain so, due to the presence of the
initial time ti. This leads to the aging properties to be dis-
cussed in Appendix B. The TTI regime is recovered in the
limit ti →` (for large but fixed finite size system) where one
can setRkst ,t8d=Rkst− t8d. Then Eq. (A2) can be Fourier
transformed in t− t8, Rksivd=et.0Rkstde−ivt (i.e., Laplace
transformed withs= iv) to obtain

Rk
−1sivd = iv + k2 + Sksivd, sA5d

]kSksivd = b̃k3−uS 1

iv + k2 + Sksivd
−

1

k2 + Sks0dD ,

sA6d

where we have defined a “self-energy”Sksivd with initial
condition Sk=1sivd=0. To obtain Eq. (A6) one writes
Sksivd=e0

lnsL/kd]lRk,l
−1sivd, uses the Fourier tranform of Eq.

(A2) and differentiate with respect tok (we set from now on
L=1). One can check that consistentlySks0d=0, as re-
quested by the statistical tilt symmetry, which we use from
now on. Apart from special cases[43], Eq. (A6) does not
admit analytical solution and we now analyze the various
regimes of interest.

From Eq. (A6) one first finds the smallv behavior of
Rk

−1sivd as

Rk
−1sivd = k2 + ivhk + Osv2d, sA7d

where hk satisfies]khk=−b̃k−1−uhk which yields hk=k2tk,
i.e., one recovers as expected the single characteristic time
scaletk given by Eq.(25).
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To analyze further the higher order terms iniv from Eq.
(A6), we first consider the scaling regimeiv, k2!1 with y
= ivtk fixed (which impliesiv!k2). Making the scaling an-
satz

Sksivd = k2gsyd, sA8d

in Eq. (A6) gives the closed differential equationyg8=g/ s1
+gd, which has the implicit solution[taking into account the
behavior ofS for iv→0 from Eq.(A6)]

geg = y. sA9d

Equations(A8), (A9) correspond to theY scaling limit of
Sec. II.

Equation(A8) is valid for finitey. As y→`, we enter the
logarithmic (X scaling limit) scaling regime, in which the

scaling variablex=kflns1/ivd / b̃g1/u is fixed andiv, k2!1.
Sincegsyd→` in this limit, the first term on the right-hand
side of Eq.(A6) can be neglected, leading to the ansatz

Sksivd = b̃k2−ufsxd, sA10d

with s2−udf +xf8=−1 from Eq. (A6) which determines the
form of the scaling functionfsxd as

fsxd =
1

2 − u
FSxc

x
D2−u

− 1G , sA11d

and the constantxc=s1/ud1/u is determined by matching to
Eq. (A8). This regimes exists only for

k , xcflns1/ivd/b̃g−1/u, sA12d

and thus corresponds to the limit of small wave vectors at

fixed v, or to relaxation timest!tk (t,eb̃sx/kd−u
for x,xc).

Whenx→xc
− one crosses over to theY regime.

We can check that these results merge smoothly with the
result directly obtained at the upper critical dimensiond=4.
There the equation forSksivd becomes

]kSksivd = b̃
k

flns1/kdg2S 1

iv + k2 + Sksivd
−

1

k2D ,

sA13d

which yields the same two scaling regimes, the first one with

tk,k−2 exphb̃ / f2k2(lns1/kd)2gj and the same scaling func-
tion gsyd (A9) and the second one reading

Sskd =
b̃

lns1/kdS− 1 + 2
lns1/kd

lnflns1/ivd/b̃g
D . sA14d

We now turn to the calculation of the response function in
the time domain. Consider first the regimeY= t /tk fixed and
t→`, k!1. Inverse Laplace-Fourier transforming Eq.(A5)
and using Eq.(24) gives the scaling form

Rkstd =
1

k2tk
GsYd, sA15d

with

GsYd =
1

2pi
E

−i`+g

i`+g eyY

1 + gsyd
. sA16d

While we have not performed a complete analysis of the
integral in Eq. (A16), the large time behavior can be ex-
tracted[44]. For Y@1, the integral is dominated by the vi-
cinity of the branch point on the real negative axis aty
=−1/e, leading to

Rkstd ,
1

k2tk
S t

tk
D1/2

expF−
t

etk
G, t @ tk. sA17d

In the logarithmic scaling regime, we cannot simply in-
vert the Fourier space result in Eq.(A10), as it does not
extend over the entire frequency interval. Instead, we return
to the defining RG equation forRk

−1std, Eq. (A2). By invert-
ing this formal equation, and again integrating down to scale
k, we obtain an equation forRkstd directly:

]kRkstd = − 2kRkptRk − b̃k3−uSRkptRkptRk

− RkptRkE
t8.0

Rkst8dD , sA18d

where pt denotes a convolution. Note that, aside from the
momentum dependence of the prefactors and the absence of
derivative terms, Eq.(A18) bears a formal similarity to the
mode-coupling equations of mean field models. In order to
match the scaling expected from the above logarithmic fre-
quency regime, we make the ansatz

Rkstd ,
1

tsln td2−2/ub̃2/u
FFX =

1

b̃
ku ln tG , sA19d

with Ff0g a constant. Inserting this in Eq.(A18), it is per-
missible to drop the first two terms in the logarthmic scaling
regime, and moreover to approximatee0

t dt8Rst− t8dRst8d
<2Rstde1

t dt8Rst8d. This yields

uXF8fXg = 2FfXgE
0

X
dzz−s2−2/udFfzg. sA20d

The solution is

E
lnsXs2−ud/uFfXgd

+` dh
Îs2 − ud2 + 4ueh

= − S1

u
DlnsX/X * d,

sA21d

whereX* =1/u is the boundary of the regime, at whichFsXd
diverges, signaling the onset of a regime of faster relaxation
onto the regimeY.

Having computed the response functionRkstd in the equi-
librium TTI regime, we also obtain the time dependence of
the connected correlation defined asCkstd=kukstdu−ks0dl
−kukstdlku−ks0dl, with Ckst→+`d=0 andCkst=0d the equi-
librium connected correlation. Indeed they are simply related
through the fluctuation dissipation relation]tCkstd=−TRkstd
or, in frequency space,
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Cksivd =
− T

iv
fRksivd − Rks− ivdg,. sA22d

2. Discussion

We now pause and comment on the results of the FRG
calculations we have just obtained. Let us first mention the
nice features before stressing the unsatisfactory points below.

First we note that the Wilson scheme used directly on the
response function within the single time scale assumption
indeed yields, as we anticipated from general arguments in
Sec. II, two distinct scaling regimes, theY= t /tk regime and
theX=ku ln t regime, with scalingformsin Eqs.(A8), (A10),
(A15), (A19). The scalingfunctionsthemselves were found
to be nontrivial, with interesting analytical structure. While
the existence of theY= t /tk regime seems to be a straight-
forward consequence of the assumption of a single time scale
tk, the emergence of theX,ku ln t regime within this hy-
pothesis is less obvious. Within the Wilson scheme, it seems
to result from the system keeping a memory of a whole spec-
trum of smaller relaxation timest,stkdx/xc, x,xc, generated
during the coarse graining procedure and naturally appears
here(while one would naively expect the largest one only,tk
to play a role). It does have the form ofactivated dynamics
since the scaling variable is trulyX=sT/T* dku ln t and thus
corresponds to crossing barriers of height,k−u. That such an
activated regime should exist is physically rather natural. In-
deed we expect from simple droplet arguments that the equi-
librium dynamics of modek at large time difference(in gen-
eral t− t8, denoted heret) is dominated by the rare active
configurations with(at least) two quasidegenerate low free
energy states at scaleL,1/k of the system. The probability
to find two nearly degenerate minima(on the scale of the
thermal energyT) at scale 1/k is ,Tku. One expects these
two minima to be separated by a barrierUb also scaling as
Ub,k−u and thus whenT ln t.Ub equilibrium thermally ac-
tivated motion back and forth over this barrier[45] becomes
active and gives rise to time-dependent correlations on the
scale lnt,k−u. Our analytical result thus exhibits the correct
scaling behavior and it is thus encouraging that such barrier
crossing behaviour and scaling comes out of the present RG
calculation.

Upon a closer look to our results in theX regime, every-
thing works as if there is an effective distribution of smaller
barriersUb=x8k−u with a distribution of relaxation timest

=eb̃Ub for 0,x8,xc. The total weight of this distribution

being only,Tku it can be written asku / b̃fsx8d. fsx8d di-
verges atx8=xc. This is easily seen, e.g., on the form for the
correlations. Indeed, using the above FDT relation one ob-
tains

Ckst1d − Ckst2d =
T

k2

ku

b̃
E

kulnt1/b̃

kulnt2/b̃ du

u2−2/uFsud, sA23d

for the correlations in the logarithmic regime. In this expres-
sion, theT/k2 equilibrium correlation is usually explained as
T/k2=s1/kd+2zdsTkud, i.e., the product of the size of a posi-
tional fluctuation between two degenerate states at scalek

and the probability of this active configuration to occur. Thus
we see that there is here an additional reduction by an extra
factor Tku, the total weight of barriers much smaller thantk
(note that the above correlation variations within regimeX
are subdominant compared to the ones in regimeY, which
really account for all but a small fraction of the total varia-
tion). Similarly one sees that the response corresponding to a
barrierx8k−u can be written as

1

k2

1

1 + iveb̃x8k−u
=

1

k2

1

1 + eb̃k−usx8−xd
→ 1

k2usx − x8d,

sA24d

as k→0 with x=ku lns1/ivd / b̃. Thus averaging with the

weight s1/b̃dkufsx8ddx8 yields exactly our resultRksivd in
regimeX if one chooses

E
0

x

fsx8ddx8 =
2 − u

Sxc

x
D2−u

− 1

. sA25d

Another puzzling feature of the above results is the non-
monotonicity of the above scaling functions. As discussed
below this is directly related to the assumption of a single
time scale, and has prompted us to reconsider the whole
calculation(at a high price of technical difficulty) in Sec. III.
We see from Eq.(A6) thatSksivd is a decreasing function of
k always and thatRksivd at fixediv is an increasing function
of k for k small enough. Correspondingly, the real-time so-
lution Rkstd is an increasing function ofk at fixed t through-
out the logarithmic regime and also in the short-time portion
of the t,tk regime. Similarly, Eq.(A23) implies that the
correlations are also increasing functions ofk at fixed t.
While this behavior is unexpected, we are presently unsure
whether it is in fact unphysical. What is clear is that it is a
consequence of the single time scale assumption. Indeed, the
rather simple and apparently physical expressionRkstd
=e−t/tk/ sk2tkd is also increasing withk for small t /tk. It ap-
pears that one can argue fairly generally that, provided there
exists a long-time regime with awell-definedtk, the response
must be increasing withk for t /tk&1.

As discussed at length in the text, one does expect that the
single time scale description is unsufficient and one should
instead consider a distribution of time scales. Let us examine
the question of monotonicity whenRkstd is simply a super-
position of elementary relaxation processes. Discarding the
subdominantk−2 prefactor and writingtk=eUL where L
=1/k is the scale, one can consider the average

Rkstd =E dUPLfUge−te−U−U. sA26d

It is dominated by the saddle pointU* sL ,td solution of

te−U − 1 +]U lnPLfUg = 0, sA27d

and the condition forRkstd to be an increasing function ofL
is
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]LPLfU*g . 0. sA28d

For a Gaussian lnPLfUg=−sU−Lud2/ s2sLad and t=0 (the
worse point) one findsU* = Lu−sLa and lnPLfU* g=−Lu

+ss/2dLa. Thus one needsaùu. Note, however, that this
supposes that the Gaussian holds down toU* ,0, which
may not be the case in general. On the other hand, the only
real condition concerns the monotonicity of the scaling func-
tion itself. Thus, one way to reduce the effect of nonmono-
tonicity is to increase the width of the distribution of time
scales.

To close this discussion, it is useful to contrast the present
situation of an elastic system with fast growing barriers with
what happens in the marginal caseu=0. This is realized for
a periodic model ind=2, e.g., for the line of fixed points of
the Cardy Ostlund model. There of course one expect a
single scaling regime compatible with simple matching argu-
ments. Settingu=0 in Eq. (A6) one finds the exact solution

k2 = S1 +
Sksivd

iv
D−2/b̃S1 + iv

2

2 + b̃
D sA29d

−
2

2 + b̃
fiv + Sksivdg, sA30d

obtained writing −dsk2d /dS=s2/b̃df1+k2siv+Sd−1g. For v
!1 this yields the scaling form

Sksivd = k2gsy = ivk−zd, z= 2 + b̃,

y = gS1 +
2

2 + b
gDb/2

, sA31d

wherez is the equilibrium dynamical exponent[note that for
b→+` one recovers Eq.(A9)]. The self-energy nicely inter-

polates betweenSksivd, ivk−b̃ at smalliv!kz (as also ob-

tained from considering the flow of the uniformh̄l ,eb̃l) and

Sksivd,sz/2db̃/zsivd2/z at largeiv@kz. From there one ob-

tains the response functionRkstd=kb̃Gstk−zd, which is found
to decay as in Eq.(A17) with tk,k−z and a characteristic

time s1+2/b̃db̃/2tk (instead ofetk obtained forb̃→+`) and
which behaves as

Rkstd , t−b̃/z, sA32d

in the limit 1! t!k−z. The functionG obeys the equation

b̃G + s2 + b̃dYG8 = s− 2 + b̃dGpYG − b̃GpYGpYG.

sA33d

Note that such as scaling functionG of Y= tkz leads to a
trivial scaling regime inX=ln t / lns1/kd reduced to a delta
function at X=−z. Note finally that even in this case, the
scaling regimeRkstd is again nonmonotonous: it vanishes at

k=0, increases up tok*, with tsk* dz=zb̃ and decreases be-
yond.

APPENDIX B: SINGLE TIME SCALE CALCULATIONS—
NONEQUILIBRIUM AND AGING

1. Response function and various regimes

The RG recursion relation for the response function de-
rived above was not restricted to equilibrium, and it is thus
interesting to write down the corresponding equations(for
response and correlations) in the full nonequilibrium regime.
Within the intrinsic limitations of the single time scale ap-
proach, this allows in principle to acces the aging properties
of the system.

To obtain closed equations for the two time response
functionRkst ,t8d once again iterates Eq.(A2) from the same

(TTI) initial condition Rk,l=0st ,t8d=ust− t8de−k2st−t8d up to l
=lns1/qd, keepingti finite and making no TTI assumption.
Thus the response satisfies the differential equation

Rk
−1st,t8d = dtt8s]t8 + k2d + Skst,t8d, sB1d

]kSkst,t8d = b̃k3−uSRkst,t8d − dtt8E
ti

t

dt9Rkst,t9dD ,

where matrix multiplication and inversion is with respect to
st ,t8d. It is more convenient to avoid the two time self-energy
and write a closed equation forRkst ,t8d as

]kRkst,t8d = − 2ksRkRkdst,t8d sB2d

− b̃k3−uSsRkRkRkdst,t8d

−E
t8

t

dt1Rkst,t1dRkst1,t8dE
ti

t1
dt9Rkst1,t9dD , sB3d

with initial condition Rk=1st ,t8d=ust− t8de−k2st−t8d. The full
analysis of this equation is quite complicated and we have
not attempted it. We will give only a few features, at a naive
level, which remain to be confirmed by a more detailed
analysis left for the future.

The functionRkst ,t8d depends on three variables but in the
limit k!1, t8− ti @1, t− t8@1 we expect that it takes scaling
forms depending only on two variables. What these variables
really are depends on the time regime, and one can identify
several possible time regimes and subregimes. They can be
classified as follows, where we indicate the form expected
for the response functionRkst ,t8d, by order of increasing
time and time differences

sId
ln t8

ln tk
, 1,

sIad
lnst − t8d

ln t8
, 1:

gFku lnst − t8d,
lnst − t8d

ln t8
G

st − t8dlngst − t8d
,
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sIbd t − t8 , t8:

hFku lnst − t8d,
t − t8

t8
G

st − t8dlndst − t8d
,

sIcd
ln t

ln t8
. 1,

ln t

ln tk
, 1:

fSku ln t,
ln t

ln t8
D

t8 lna t8
,

sIdd t , tk:

mSku ln t8,
t

tk
D

t8lnc t8
, sB4d

sII d t8 , tk,

sIIad
lnst − t8d

ln tk
, 1:

FFku lnst − t8d,
t8

tk
G

st − t8dlnbst − t8d
,

sIIbd t − t8 , tk:

GS t − t8

tk
,
t − t8

t8
D

k2tk
, sB5d

sIII d
ln t8

ln tk
. 1 equilibrium Rkst − t8d,

sIIIad
lnst − t8d

ln tk
, 1,

Ffku lnst − t8dg
st − t8dln2−2/ust − t8d

,

sIIIb d t − t8 , tk,

GS t − t8

tk
D

k2tk
.

Regime (III ) is the equilibrium TTI regime, where the
only dependence is int− t8. There are two scaling forms
possible corresponding to the two subregimes X(IIIa) and Y
(IIIb ) studied in Appendix A. Fully equilibrated regime(III )
is expected here for very large timest. t8@tk, and is some-
how at variance with mean field models(where one always
expect aging, e.g., fort, t8, even for very larget8). In re-
gimes(I) and (II ) the mode k att8 has not yet equilibrated,
and the scaling functions ar now also function ofku ln t8
(regime I) or t8 /tk (regime II), in addition of being functions
of t− t8. In both regimes(I) and (II ) if t− t8 is small one
expects some kind of equilibrium regime. Indeed fort− t8
,Os1d we expect that there will be a fully TTI equilibrium
regime, but it is also expected to be nonuniversal. A univer-
sal, quasiequilibriumregime is expected, however, fort− t8
, t8u, t8, u,1 [regimes(Ia) and (IIa)]. As the time differ-
ence increases it should crossover att− t8, t8 to an interme-
diate aging regime[regimes(Ib) and(IIb)]. Regime I is most
complex as there one expects two later regimes ast− t8, t
, t8v, v.1 crossing over to yet another scaling regime when
t reachestk. It is interesting to note that either in Sinai model
[46] or even more clearly in the 1D random field Ising model

[7] such regimes are also expected, some have been studied
demonstrated and studied in detail(there is also an equilibra-
tion time scale analogous totk).

In the determination of all the above regimes the quantity

mkstd =E
ti

t

dt9Rkst,t9d, sB6d

which appears in Eq.(B3) plays an important role. It is a
function of t alone. It satisfies the equation

]kmkstd =E
ti

t

dt1Rkst,t1dF− 2kmkst1d − b̃k3−uSmkst1d2

−E
ti

t1
dt8Rkst1,t8dmkst8dDG . sB7d

Its value can be understood by using the STS covariance
under urt →urt +vr, where vr is an arbitrary function. In a
general nonequilibrium situation, the STS gives constraints
relating different initial conditions att= ti. It can be written

as lnZfhkt,ĥkt,uk,t=0=0g=Zfhkt+k2vk,ĥkt,uk,t=0=vkg
−ektĥktvk, where the initial condition is explicitly indicated.
It thus immediately yields

mkstd =
1

q2S1 −
d kuqstdl
duqstid

D . sB8d

When t1@tk we expect that the influence of the initial con-
dition on modek has been washed out, and we find the
equilibrium constraint limt→+`mkstd=e0

+`Rkstddt=1/k2

[which, combined with FDT givesCks0d−Cks`d=T/k2].
Thus, we expectmkstd to take the form

mkstd = k−2+smsku ln td
ln t

ln tk
, 1, sB9d

mkstd = k−2Mst/tkd t , tk, sB10d

with Ms`d=1 and a reductionks in the short time regime
compared to asymptotic one, with an interpretation in terms
of the susceptibility to initial condition being almost 1, pre-
sumably with some rare(droplets ?) configurations exhibit-
ing decorrelation.

To discuss the specific choice of the scaling functions and
prefactors we proceed as follows. Let us consider regime(I).
We have found that with the forms of the prefactors in sub-
regimes(Ic) and (Ia) indicated above we could obtain from
Eq. (B7) nontrivial equations for the scaling functions. The
regime (Ib) is then necessary to match(Ic) and (Ia). Next,
with the forms conjectured for(Ia,b,c) the terms in Eq.(B7)
scale, respectively, as 1,k2−us1−aid, k4−u−2us1−aid, k2−u−us1−aid+s

(where the first term is the derivative) with ai =g, d, a, re-
spectively, in each subregime. Thus eithersøu /2 andus1
−ad=2−u+s and only the last term counts orsùu /2 and
us1−ad=2−u /2 (in equilibrium regime III one hads=0
leading toa=2−u /2). Here, we see that ifmkstd is deter-
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mined by an integration over regimes(Ia,b,c) as is natural, it
implies s=2−maxai=g,d,a us1−aid, and one sees thats
=u /2 and

g = d = a =
3

2
−

2

u
, sB11d

is the only solution. Note that this contradicts the naive ex-
pectation that the form in the quasiequilibrium regime(Ia)
would scale as the equilibrium form IIIa[they differ by a
power of a lnst− t8d]: to get g=2−2/u would requires=0,
and some argument that the value ofmkstd is controlled by
t− t9 in the short time nonuniversal regime.

Accepting the above scenario as reasonable we find the
equation for the scaling functionfsx,ud as

ux]xfsx,ud = b̃x2s1−ad

3 FE
u

1 du1

u1
a fsx,u1dfSxu1,

u

u1
D

3E0
u1

du2

u2
a fSxu1,

u2

u1
D −E

u

1 du1

u1
a

3Eu
u1

du2

u2
a fsx,u1dfSxu1,

u2

u1
D fSxu2,

u

u2
DG .

sB12d

The 0 bound in the integral really comes from the ration
ln ti / ln t assumed to be very small. The first term in the right-
hand side of Eq.(B3) gives a subdominant contribution.
Similar equations hold for the other regimes. We have not
attempted to analyze further these equations at this stage.
This would be necessary to fully confirm the self-consistency
of the scenario proposed here.

2. Correlation function

Let us now indicate the RG equation obeyed by the cor-
relation function. It is obtained from considering the full lo-
cal quadratic term in the running effective action

−
1

2
E

r,t.ti,t8.ti

siûrtdsiûrt8dUlst,t8d. sB13d

One can also decompose it asUlst ,t8d=Vlst ,t8d+Dls0d by
extracting the persistent part(disorder), requiring that
limt,t8,t−t8→+`Vlst ,t8d=0. To lowest orderOsDd Ul is cor-
rected and flows as follows:

]lUlst,t8d = − GlLl
4f 1

2CLe−l,lst,td + 1
2CLe−l,lst8,t8d

− CLe−l,lst,t8dg , sB14d

where we assumed a flat initial conditionurt=0=0 (otherwise
it should be added) and to this orderUl remains local. The
persistent part of Eq.(B14) yields]lDls0d=−TGlLl

2 in agree-
ment with Eqs.(15), (17) [using that the persistent part of the
parenthesis in Eq.(B14) is the equilibrium connected corre-
lation CLe−l,l

eq,c =TlL
−2e2l]. Substracting it yields the flow ofVl.

One closes the equations determiningCl, Ul usingCk,lst ,t8d

=fRk,l ·Ul ·Rk,lgst ,t8d. Equivalently one can separate the effect
of the random force part of the disorder in the correlation and

write Ck,lst ,t8d=C̃k,lst ,t8d+Dls0dmk,lstdmk,lst8d [with mk,lstd
=e0

t dt8Rk,lst ,t8d] with two closed equations forC̃l andVl us-

ing C̃k,lst ,t8d=fRk,l ·Vl ·Rk,lgst ,t8d.
Proceeding as above, to determine the correlation one de-

finesUk=Ul=lnsL/kd (similarly for Vk) and obtains

]kUkst,t8d = b̃k3−u f 1
2Ckst,td + 1

2Ckst8,t8d − Ckst,t8dg ,

sB15d

with Ck,l=lnsL/kdst ,t8d=Ckst ,t8d, which should be solved along
with

Ckst,t8d =E
ti

t

dt1E
ti

t8
dt2Rkst,t1dUkst1,t2dRkst8,t2d,

sB16d

with initial conditions atk=1:

Ukst,t8d = 2hTdtt8 + Ds0d sk = 1d, sB17d

Ckst,t8d =
T

k2se−k2ut−t8u − e−k2st+t8dd

+
Ds0d
k4 s1 − e−k2tds1 − e−k2t8d sk = 1d. sB18d

Using the equation for]kRk one can also write the closed
equation forCkst ,t8d as

]kCkst,t8d =E
t1,t2.ti

fRkst,t1dCkst2,t8d + Rkst8,t1dCkst2,tdg

3 F− 2kdt1,t2
− b̃k3−uSRkst1,t2d − dt1,t2

3E0
t1dt9Rkst1,t9dDG + b̃k3−uRkst,t1dRkst8,t2d

3S1

2
Ckst1,t1d +

1

2
Ckst2,t2d − Ckst1,t2dD ,

sB19d

and initial condition(B18). Alternatively, one can work with

C̃k andVk, which have a more complicated equation but sim-
pler initial conditions

Vkst,t8d = 2hTdtt8 sk = 1d, sB20d

C̃kst,t8d =
T

k2se−k2ut−t8u − e−k2st+t8dd sk = 1d.

One easily checks that upon the assumption of time trans-
lational invariance as should hold in the equilibrium regime,
the equation forCkst ,t8d=Ckst− t8d becomes, as expected,
equivalent to the one forRkst− t8d via the FDT relation. Fur-
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ther study of the nonequilibrium equations, including the de-
termination of the FD violation ratioXst ,t8d in the various
regimes is left for forthcoming publications.

APPENDIX C: CORRECTIONS TO THE f-TERM BY
PINNING DISORDER

Let us give some details about the calculation of the
graphs in Figs. 3, 4. The correction to the effective action to
lowest order inT coming from the cross termFD reads

d G =K1

2
E

r,r1,t,t8
siûrt + idûrtdsiûrt8 + idûrt8dDfurt − urt8

+ dsurt − urt8dg 3 FFzr1
+E

t1

idûr1t1
]t1

ur1t1

+E
t1

iûr1t1
]t1

dur1t1
+E

t1

idûr1t1
]t1

dur1t1GL
du,dû

1PI

,

sC1d

with zr =etiûrt]turt and the averages overdu, dû are restricted
to one-particle irreducible graphs. This splits into contribu-
tions corresponding to graphs(a)–(c) in Fig. 3 which evalu-
ate respectively as(dropping all terms which do not correct
F):

dGsad =
1

2
E

r,r1,t,t8
iûrtiûrt8

1

2
D9s0dKsdurt − durt8d

2F

3Fzr1
+E

t1

idûr1t1
]t1

ur1t1GL
= −

1

2
D9s0dRq,v=0

2 E
r
Szr

2F9fzrg −E
tt8

iûrt8iûrts]turtd2D ,

sC2d

3dGsbd =
1

2
E

r,r1,t,t8
Dsurt − urt8dKidûrtidûrt8F

3Fzr1
+E

t1

iûr1t1
]t1

dur1t1GL
=

1

2
Rq,v=0

2 E
r,t,t8

]t]t8fDsurt − urt8dgiûrtiûrt8F9fzrg,

sC3d

3dGscd =
1

2
2E

r,r1,t,t8
iûrtKidûrt8Dsurt − urt8 + durt

− durt8dFFzr1
+E

t1

diûr1t1
]t1

ur1t1

+E
t1

]t1
dur1t1

iûr1t1GL

= Rq,v=0
2 E

r,t,t8
iûrtiûrt8]turt]t8D8surt − urt8dF9fzrg,

sC4d

as well as the graph in Fig. 4:

dGs3d =
1

2
2E

r,r1,t,t8
iûrtKidûrt8Dsurt − urt8 + durt − durt8dF

3Fzr1
+E

t1

diûr1t1
]t1

dur1t1GL
=E

r,t,t8
iûrt]t8D8surt − urt8dF8fzrgE

t1

Rq,t−t1
Rq,t1−t8.

sC5d

This yields the result(48) in the text.

APPENDIX D: MAPPING OF RANDOM FRICTION
MODEL ONTO POLYMER AND RELATED PROBLEMS

The random friction model(in its nontrivial T=0 limit)
can be mapped formally onto various other problems, such
as, after disorder averaging, the statistical mechanics of a
pure self-interacting chain(e.g., a self-avoiding walk prob-
lem) or, prior to averaging, to some random diffusion mod-
els, e.g., depolarization of a spin diffusing in a random mag-
netic field. Concerning its behavior one should distinguish
between the genuine model[with a fixed distributionPshd]
and the effective one which appear as a coarse grained ver-
sion of the pinning problem, in whichPshd flows and be-
comes very broad.

First settingPsr ,td,hsrdurt one sees that Eq.(28) [with
fsr ,ud=0 and T=0] is the Fokker-Planck equation]tP
=¹Dsrdf¹+ ¹VsrdgP for the diffusion of a particle with a
random diffusion coefficientDsrd=1/hsrd in a random po-
tential Vsrd=−lnhsrd, of equilibrium measurePeqsrd=e−Vsrd

=hsrd. Whenhsrd is uncorrelated from site to site one does
not expect any anomalous behavior in any dimension, except
if the distribution ofh has broad tails(e.g., algebraic would
yield anomalous power law diffusion). In the effective model
Vsrd becomes Gaussian and grows with scale which corre-
sponds to a particle localized in some regions of space.

A complementary picture can be developed based on a
mapping onto a self-interacting chain. The response function
Rrt,r8t8=ddurt /dhuh=0 of this model is obtained by solving

fhsrd]t − ¹2gdurt = hdsr − r8ddst − t8d, sD1d

with initial condition durt=0=0. This impliesdurt =0 for all
t, t8. Thus the response is a function oft− t8 alone and its
Laplace-Fourier transforms= iv in any given random envi-
ronment, can be written as

Rrr8ssd =KrU 1

− ¹2 + shsrd
Ur8L =E

0

+`

dukr ue−uHur8l ,

sD2d

where H=−¹2+shsrd, which has a positive spectrum for
s.−sp. The valuesp at whichH develops an eigenstate of
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zero eigenvalue(e.g.,sp =1/hmax in the “classical” limit c
→0) gives the large time decay ofRrr8std,e−spt.

We can also write, in the Fourier domain, using the Feyn-
man Kac formula

Rrr8sivd =E
0

+`

due−sm+ivh̄duE
xs0d=r8

xsud=r

Dxsvd,

expH−E
0

u

dvF1

4
S dx

dv
D2

+ ivdh„xsvd…GJ , sD3d

with the “time” variablesu and v. We have splittedhsxd
=h̄+dhsxd for convenience and added a small mass termm
for convenience. In this form the problem has the form of a
spin decoherence problem, the integral being dominated by
paths which average well over the random relaxation times,
rather than paths with multiple returns to the same region
which average poorly and then cancel incoherently(details
about the mapping and special distribution of noise can be
found in Ref.[47]).

Averaging over disorder leads, for small disorder, to

Rr−r8,v =E
0

+`

due−sm+ivh̄duZSr − r8,u,g =
1

2
v2h2D ,

Zsr − r8,u,gd =E
xs0d=r8

xsud=r

Dxsvd, sD4d

expS−E
0

u

dv
1

4
S dx

dv
D2

−E
0

u

dvdv8gd„xsvd − xsv8d…D ,

which is the partition function of a self-avoiding walk in the
Edwards representation. We have retained only the second
momenth2 of dhsxd, but of course the full interaction could
be written usingFfzg. The theory is described by a nontrivial
fixed point in d,4 [related to then=0 Osnd model with
masssm+ ivh̄d and couplingg̃,gL4−d]. This is compatible
with the previous conclusions for theF theories using per-
turbation theory if we taket as a simple index, with no power
counting dimension(it plays a role somewhat similar to the
replica indexa). The correction tog by g2 comes from the
contraction of twoh2 vertices, of the formdsv2h2d=v4h2

2

and is indeed logarithmically divergent ind=4. Note that the
mass term is thus relevant at the fixed pointg̃=g*.

This analysis yields information at finite time. The Gins-
burg criterion gives the critical regime asr .g−1/s4−dd or
u.g−2/s4−dd, in which Zsr −r8 ,u,gd takes the scaling form

Zsr,u,gd = u−ndFfru−ngZsq = 0,u,gd, sD5d

Zsq = 0,u,gd , ug−1e−scsgdu, sD6d

with scsgd=cg for d.2, scsgd=cg lns1/gd for d=2, and
scsgd=cg2/3 for d=1. Thus ford.2 we expect that

Rq,v <
1

ih̄v + ch2v2 + q2 , sD7d

in the noncritical regime, while we expect

Rq=0,v < S 1

ih̄v + ch2v2Dg

, sD8d

i.e., Rq=0,t, tg−1e−ch2t/h̄ in the critical regime, and forq.0,
the appropriate scaling function ofrt−n.

The critical regime correspond to

h̄v . S h̄2

h2
D2/d

, sD9d

which for the genuine model gives a singularity only at finite
(true) time (see, however, Ref.[47] for possibly more radical
effect of non-Gaussian disorder). However, in the limit of
very broad disorder, as in the effective model, one hash2
@h̄2 and thus the critical singularity moves to smallv.

Note that ford,2 the behavior is more radical as one
expects, e.g., ind=1:

Rq,v <
1

ih̄v + csh2d2/3v4/3 + q2 . sD10d

Thus to conclude, in the absence of pinning disorder at
T=0 theF term is preserved but generate higher order time
derivative terms. The theory can be rescaled so as to possess
a nontrivial finitev, finite disorder term, which presumably
in d.2 produces only preexponential algebraic corrections
to the leading behaviors given by the most relevanth̄ term.
For the effective model this critical behavior should be ob-
servable even at smallv.

APPENDIX E: FULL FLOW OF THE TRUNCATED
EFFECTIVE ACTION

In this appendix we discuss an approach to the calculation
of the mean response function extending the approximate
FRG scheme of Sec. III, but still neglecting the functional
dependence of operators considered in Sec. IV. In Sec. III the
broad distribution of time scales was embodied in the so-
called F term. We uncover here an interesting structure of
additional operators in the spirit of the more complete set of
momentsktP1lL¯ ktPNlL discussed in the Introduction. Recall
that in Sec. III B, we showed that, although theF term did
not renormalize itself, it did generate higher derivative terms.
Such termscan contribute to the frequency dependence of
the response function. We studied in the previous appendix
the response function of the pure random friction model,
which does generate higher derivative terms, but neglects the
scale dependence generated by the pinning disorder. Here we
consider these two effects in tandem, hence modifying the
results for Rkstd , Rksvd within the purely random friction
model. While we have not been able to obtain simple expres-
sions in this more complete(albeit still nonfunctional) ap-
proximation, one can go quite far in reducing the problem to
one of applied mathematics.
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1. Generalized random friction model

To proceed further one needs to construct a more system-
atic approach where all possible important terms in the dy-
namical action functional are included. We will generalize
the F term (at zero temperature for simplicity) in the form

Skin = o
n=1

`

o
p1¯pnù1

Fp1¯pn

snd E
rt1¯tn

iûrt1
¯ iûrtn

3 ]t1

p1urt1
¯ ]tn

pnurtn
, sE1d

and we will often denote bym=p1+¯ +pn the total number
of time derivative in a given term of the sum. This form of
the action neglects terms with products of time derivatives of
urt at the same time, as well as statistically translationally
invariant functional dependence, e.g., onurt1

−urt2
. However,

it does include considerably more physics, and as we will
see, enough generality to approach the problem of computing
the averaged response functions. This kinetic part of the ac-
tion corresponds to the following generalization of the ran-
dom friction model:

o
m=1

+`

hmsrd]t
murt = ¹2urt + Fsurt,rd, sE2d

with fhp1
sr1d¯hpn

srndgC=n! s−1dn+1Fp1,. . .,pn

n dr1,. . .,rn
.

The response function is related to the lowestsn=1d
member of this hierarchy via

Rk
−1sivd = k2 + S̃ksivd, sE3d

=S̃ksivd = o
m=1

`

Fm
s1dsivdm, sE4d

and within the Wilson scheme the true physical response
function Rk

−1sivd is obtained via the same formula using the
running Fm

s1dul=lnsL/kd. This is represented graphically in Fig.
12.

One can carry perturbation theory using the generalized
F. The vertices are shown in Figs. 13, 14. In this notation,
there are a variety of important one loop diagrams to be
considered. These are shown in Fig. 15. Schematically, these
contributions give rise to an RG equation for theFm

snd of the
form

]lFm
snd = DFm

snd + Fm
sn+1d + Fm8

sn8dFm−m8
sn+2−n8d + DFm8

sn8dFm−m8
sn+1−n8d

+ D2Fm8
sn8dFm−m8

sn−n8d + ¯. sE5d

In Eq. (E5), we have neglected coefficients, powers ofl, and
fine distinctions such as the precise form ofD which appears
in a given term. Repeated(primed) indices other thanm and

FIG. 12. Graphs with onlyn=1 vertices which enter in the
response function(a) and its self-energy(b).

FIG. 13. Graphical representation of anF vertex Fp1¯pn

n with
n=4, p1=1, p2=2, p3=1, p4=3, m=oipi =7. Dots represent the
number of time derivatives(i.e., power of frequency factor), each
leg has a different frequency.

FIG. 14. Compact notation for a genericF vertex. The open
circle represents anF vertex with an arbitrary number of legsn not
shown. On incomingsud lines, an arbitrary number of time deriva-
tives (powers ofv) are indicated by an open square.

FIG. 15. One-loop diagrammatic contributions to theF terms.
The diagrams in(a)–(e) represent contributions toF of orderF, DF,
F2, F2D, andF2D2, respectively.
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n are summed. The pure random friction model contains only
those diagrammatic contributions with no pinning disorder
D=0. Thus only the second and third terms in Eq.(E5) are
taken into account for instance by the mapping to a polymer
problem in the previous appendix. Note that there are no
terms of OsFD2d contributing to the renormalization ofF,
which follows diagrammatically because one needs at least
two F’s to put boxes(time derivatives) on the incoming legs
originating from the two pinning disorder vertices.

A beautiful simplicity arises due to the extremely broad
distribution of time scales in the RG, and can be seen from
the structure of Eq.(E5). In particular, we note that the total
number of powers ofv is conserved by all terms. Moreover,

from the prior analysis, we expecthsmd,hl
2m2−m. We thus

conjecture that allFm
snd scale in this wayindependentlyof n,

i.e.,Fm
snd,hl

2m2−m (see below to see that this scaling is indeed
self-consistent). Under this assumption, the terms involving
more than twoF8s in Eq. (E5) can be seen to be strongly
subdominant, which follows from the convexity of the 2m2

−m factor in the exponential. Thus the superexponential
(Gaussian) growth of the moments of the time scales, which
is directly connected to the broad distribution of relaxation
times, plays a key role in simplifying the structure of the RG.

One can thus restrict the analysis to the linear part inF of
the full one-loop RG equation. Note that this indeed com-
bines the effects of pinning disorder and the “upward” feed-
back of the random friction model—the first two terms in Eq.
(E5). The linearized RG equation reads

]lFp1¯pn

snd = Gls2n2 − ndFp1¯pn

snd + sn + 1dae−sd−2dl

3o
r=1

n

o
q=1

pr−1

Fp1¯pr−1spr−qdpr+1¯pnq
sn+1d , sE6d

wherea=Ld−2Ad. The general study of this equation is again
highly difficult but we see that it does have special solutions
where theFhpij

snd depend only uponm=Sipi. From the above

consideration about the asymptotic behavior it is rather natu-
ral to look for such solutions.

Thus we letFhpij
snd =Fl,m

snd. Then the linear RG equation(E6)

becomes

]lFl,m
snd = Gls2n2 − ndFl,m

snd + sn + 1dae−sd−2dlsm− ndFl,m
sn+1d.

sE7d

This is much easier to solve and the attentive reader will
easily find that this infinite hierarchy of differential flow
equations is solved asymptotically by the ansatz

Fp1¯pn

snd = F b̃

a
esd−2+udlGn−mS hl

h0
D2m2−m

h̃0
smds− 1dm+1am

n ,

sE8d

wherem=Si=1
n pi. Theam

n coefficients are given by

am
n =

m!

n! p
r=n

m−1
1

2m+ 2r − 1
=

m ! s2m+ 2n − 3d ! !

n ! s4m− 3d ! !
. sE9d

The h̃0
smd coefficients are not determined by the asymptotic

analysis. In principle, they should be matched at some scale
l * .0 to the form of theFm

snd coefficients determined by the
early stages of renormalization, in which the linearized RG
equation used to obtain them is not valid. One might imagine
beginning with a model in which the bare relaxation time
was distributed with cumulantsh0

smd, and naivelyh̃0
smd< h̄0

m.
We will use this prescription below purely in order to sim-
plify notation. However, a more detailed analysis of the early
stages of renormalization is in fact required to discern
whether this is indeed correct.

2. Equation for the equilibrium response function

We are now in a position to extract the response function.
Applying Eqs.(E4), (E8), (E9) for n=1 gives the response as
an infinite series iniv:

Rk
−1sivd = o

m

s− 1dm+1h0
smd exphs2m2 − mdUk

+ fg − sd − 2 +udl − lns1/ivdgmj, sE10d

whereUk;Ul=lnsL/kd. Since it is not easy to resum this series,
and its convergence properties are unclear, we now reformu-
late the above calculation in a functional way, in hopes of
surmounting the limitations of the expansion in terms of mo-
ments of relaxation times. Let us introduce the generating
function

Gsiv,zd = o
mùnù1

sivdm−nznFml
n , sE11d

which conveniently captures both theF term (and hence dis-
tribution of relaxation times) and the response function

Fszd = Gs0,zd, sE12d

ih0v + Sksivd =
]

]z
uGsiv,zduz=0. sE13d

Multiplying Eq. (E7) by the appropriate powers ofz and iv
and summing gives the flow equation

]lG = Glsz]zG + 2z2]z
2Gd + ae−sd−2dlhiv]ivfivs]zG − ]zGuz=0dg.

sE14d

This is somewhat simplified by defining the derivative
Hsiv ,zd=]zGsiv ,zd,

]lH = GlsH + 5z]zH + 2z2]z
2Hd + ae−sd−2dliv]ivsiv]zHd.

sE15d

A hopefully illuminating change of variables is to define

u = lns1/ivd, sE16d

v = lnsz/ivd − su + d − 2dl ± lnsa/xd. sE17d

ThenKsu,vd=Hsiv ,zd, and obeys
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]Ul
K = K + 3]vK + 2]v

2K + s]u − ]vdse−v]vKd, sE18d

where]lUl =xeul as before. Note that theF term is recovered
in the limit v→` andu−v=ln z+const is fixed, in which the
second term is negligible. In that limit, we recover the diffu-
sion with drift equation(51), and the appropriate solution is
Ksu,vd=Fsv−ud=F8sev−ud. More general solutions of Eq.
(E18) remain to be found.

APPENDIX F: ONE LOOP HIERARCHY: METHOD OF
CALCULATION

In this appendix we show how the systematic calculation
of the one loop correction to the dynamical effective action
can be organized, and sketch explicit calculation on the sim-
plest examples. We focus onT=0.

The schematic form of the dynamical actionS is given in
the text in Eq.(77) as a sum of terms containing an increas-
ing number of independent times(cumulants):

S= iû1S1 −
1

2
iû1iû2S12 −

1

6
iû1iû2iû3S123− ¯. sF1d

We use the same schematic notation where the indices
1,2,3, . . ., areshort hand notations fort1,t2,t3, . . ., space co-
ordinate and all time and space integrations are implicit.
From Eq.(77) S1 is parametrized by an infinite set of kinetic
coefficientsh̄, D , . . . ,S12 by a set of second cumulant func-
tions D ,G,A,B,C, . . . ,S123 by a set of third cumulants
H ,W, . . ., etc. [from Eq. (79)].

In a first stage we write the total one loop corrections to
the action as the sum of tadpoles, two vertex loop, three
vertex triangles, etc., with eitherS12 or S123 (and so on) type
vertices using the full response functionR12, inverse of
iû1S1, to contract the vertices(internal lines). Enumerating
possible contractions and performing some combinatorics,
yields upon grouping resulting terms by number of indepen-
dent times:

dS1 = − kiû2S12l, sF2d

dS12 = kiû3S123l + F1

2
S34kS12iû3iû4l + kS24iû3lkS13iû4lG ,

sF3d

dS123= F1

2
S45kS123iû4iû5l + 3kS14iû5lkS235iû4l

+
3

2
kS12iû4iû5lS345G + f2kS34iû5lkS15iû6lkS26iû4l

+ 3kS12iû4iû6lkS34iû5lS56g, sF4d

where additional(time) indices are integrated over Note that
S1 is corrected only by tadpoles,S12 by tadpoles and two
vertex loops, and so on.

In this formula notations such as, e.g.,kS12û3û4l denote
the sum of all possible contractions of theû fields with theu
fields inside the bracket(at T=0 these are the only possible
contractions). SinceS12=S12fu12,u̇1,u̇2,ü1,ü2, . . .g is an ex-

plicit function of u12=u1−u2, and time derivatives ofu1 and
u2 (and similarly for all other vertices) one may write the
sum of all possible contractions as

kiû2S12l = fR12]u12
+ s]1R12d]u̇1

+ s]1
2R12d]ü1gS12 + ¯.

sF5d

We recall that here causalityR22=0 restricts contractions
only with u1 (first term), u̇1 (second term), etc.

The next stage is to make apparenth̄, D, etc., and thus to
define the expansion

R12 =
1

k2Sd12 + o
p=1

+`

Ap]1
pd12D , sF6d

k2Rssd =
k2

k2 + Sssd
= 1 + o

n=1

+`

s− 1dnk−2nSssdn

= 1 + o
p=1

+`

Aps
p, sF7d

A1 = − k−2h̄ , A2 = − k−2D + k−4h̄2. sF8d

The momentum structure of the one loop diagrams being
trivial, within Wilson one can replacek=Ll everywhere. As
explained in the text this expansion in power of frequency
can be done consistently and corresponds diagrammatically
to expansion in number of dots.

One then evaluate the contractions shifting time integra-
tions. Let us illustrate this on simple examples.

The corrections toh andD can be obtained from Eq.(F2)
using Eq.(F5). One has

dS1 = − fR12]u12
+ s]1R12d]u̇1

+ s]1
2R12d]ü1gS12, sF9d

=− fsd12 + A1]1d12 + A2]1
2d12d]u12

S12 + s]1d12

+ A1]1
2d12d]u̇1

S12 + ]1
2d12]ü1

S12g, sF10d

=− d12fs1 + A1]2 + A2]2
2d]u12

S12 + s]2 + A1]2
2d

3]u̇1
S12 + ]2

2]ü1
S12g. sF11d

In the second line we have used the expansion(F6) and in
the last line we have used that]1R12=−]2R12 and integrated
by parts overt2. Then time derivatives on the vertexS12 can
be evaluated and tranformed into derivatives with respect to
fields as

]2 ; ]2S12 = s− u̇2]u12
+ ü2]u̇2

dS12, sF12d

]2
2 ; ]2

2S12 = s− ü2]u12
+ u̇2

2]u12

2 dS12. sF13d

At all stages of the calculation we can drop all terms con-
taining more than a fixed number(here 2) of time derivatives
since they will contribute only to higher order terms in the
effective action. Putting everything together we obtain

dh = G8s0d − h̄D9s0d, sF14d
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dD = − As0d + C8s0d − 2h̄k−2G8s0d

− D9s0dsk−2D − k−4h̄2d, sF15d

which, in terms of rescaled quantities, yield the Eqs.(90),
(96) in the text.

Next we want to evaluate the corrections to second cumu-
lant functionsD ,G,A,B,C encoded indS12. We start by the
simplest, the tadpole, which yields the feedback of third cu-
mulants into second ones:

udutadpoleS12 = kS123û3l = sR13]u1
S123+ ]1R13]u̇1

S123

+ R23]u2
S123+ ]2R23]u̇2

S123d, sF16d

=2d13fs1 + A1]3d]u1
+ ]3]u̇1

gS123, sF17d

=2d13f]u1
+ A1u̇3]u3

]u1
+ u̇3]u3

]u̇1
gS123,

sF18d

with ]3= u̇3]u3
. This gives the 2S18s0,0,ud term in Eq.(68)

for D and theH feeding term in the equation forG (we have
not explicitly computed the feeding ofW into A,B,C but it is
easily obtained from the above).

Next we need theS12
2 corrections toS12 which yield all

non linear terms in Eqs.(91), (97)–(99) for G,A,B,C. The
corresponding correction todS12 consists in the two terms in
the square bracket in Eq.(F3). The full calculation being
tedious we only indicate here how one shuffles time integrals
in the first term(denotedd1S12). Starting from

d1S12 = 1
2S34kS12û3û4l = 1

2S34fsR14 − R24d]u12
+ ]1R14]u̇1

+ ]2R24]u̇2
+ ]1

2R14]ü1
+ ]2

2R24]ü2
gfsR13 − R23d]u12

+ ]1R13]u̇1
+ ]2R23]u̇2

+ ]1
2R13]ü1

+ ]2
2R23]ü2

gS12,

sF19d

using again identities such that]1R14=−]4R14, expanding the
R and integrating by parts overt4 and t3 one can write

d1S12 = 1
2S34fs1 + A1]4

Q + A2]4
Q2dsd14 − d24d]u12

+ s]4
Q + A1]4

Q2d

3sd14]u̇1
+ d24]u̇2

d + ]4
Q2sd14]ü1

+ d24]ü2
dg

3 fs1 + A1]3
Q + A2]3

Q2dsd13 − d23d]u12
+ s]3

Q + A1]3
Q2d

3sd13]u̇1
+ d23]u̇2

d + ]3
Q2sd13]ü1

+ d23]ü2
dgS12. sF20d

This is then in the form where, as above, all time derivatives
can be replaced by derivatives over fields acting either onS12
or S34 using identities such as Eq.(F12) together with
]4]3S34=−u̇3u̇4]u34

2 S34. The evaluation of the second term in
Eq. (F3) proceeds similarly and the sum of the two yields
Eqs.(91), (97)–(99) in the text. Note that causality must be
enforced at each step of the calculation.

APPENDIX G: INTEGRABLE “UNIRELAXATIONAL
MODEL”

In this section we introduce a set of integrable models in
various dimensions which can be used as a check of the FRG
equations derived in this paper. This models have a remark-
able property that despite being random the dynamics is ex-
tremely simple and the relaxation time scales are simply that
of a single mode generalized oscillator.

Let us consider first the toy model in zero dimension

hsutd]tut = fsutd − m2ut, sG1d

with fsud=−V8sud, when

hsud = h̄f1 − m−2f8sudg, sG2d

it can be rewritten

]tffsutd − m2utg = −
m2

h̄
ffsutd − m2utg, sG3d

which can be integrated exactly, yielding a pure exponential
relaxation with a single time scale:

fsutd − m2ut = e−tsm2/h̄dffsu0d − m2u0g. sG4d

Drawing Fsud= fsud−m2u as a function ofu we see that all
initial conditions starting in an interval between two adjacent
minima and maxima and which contains a zero ofFsud, will
converge exponentially to this zero ofFsud [48]. Thus, if
Fsud has several zeroes the convergence will be to minima
and maxima of the potential energyHsud=Vsud+ 1/2m2u2

(depending on the initial condition). This should not be a
surprise since in that casehsud changes sign so the dynamics
is no more dissipative. One can then extend the system to
nonzero temperatureT.0, imposing FDT with a stationary
measuree−Hsud/T by addingzt to the right-hand side of Eq.
(G1) with correlations

kztzt8l = 2Thsud. sG5d

Note that this means imaginary noise at points wherehsud is
negative. Thus the convergence to the maxima ofVsud is
killed by interference effects.

The exact response function associated to theu field can
be obtained for this model atT=0. Upon adding an infini-
tesimal perturbationht on the right-hand side of Eq.(G1) the
changedu is such that

ff8sutd − m2gdut = − m2E
t8

Rtt8
s0dht8, sG6d

whereut is given by Eq.(G4) and R
tt8
s0d=s1/h̄de−tsm2/h̄d. The

disorder averaged response function is thus

Rtt8 = S1 −
f8sutd
m2 D−1

Rtt8
s0d. sG7d

In the large time limit time translational invariance is re-
stored and one finds
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Rtt8 = Rtt8
s0d. sG8d

This a consequence of the following property:

S1 −
f8sutd
m2 D−1

= 1, sG9d

where for each realization of the random functionfsud, ut is
the solution of

fsutd = m2ut, sG10d

and the average is taken with respect to any translationally
invariant distribution forfsud.

A similar model may be introduced in arbitrary dimen-
sion. It is defined as

h̄Ḟrt = − Frt + zrt , sG11d

Frt = ¹2urt + fsurt,rd. sG12d

This yields the equation of motion

− h̄¹2u̇rt − h̄f8surt,rdu̇rt = ¹2urt + fsurt,rd + zrt . sG13d

This is identical in form to the model discussed in the text
with the exception that the damping coefficient is wave vec-
tor q dependent and vanishes asq2. Upon averaging over
disorder one obtains an MSR action identical to the model
studied in the text apart from theq2 mean damping with

Gsud = h̄D8sud, sG14d

Asud = − h̄2D9sud, sG15d

and no other higher order vertex for a Gaussian distributedf
(more general expressions can be easily obtained for non-
Gaussian distributions). The bare response function of this
model factors as

Rqv =
1

q2s1 + h̄ivd
. sG16d

Similar arguments as above yield that this is also the exact
response.

The one loop Wilson FRG of this model is very similar to
the one performed for the model in the text. Since the relax-
ation time is dimensionless in this model vertices such asG
andA scale identically toD. Hence the appropriate rescaled

functions for these vertices areG̃,Ll
−«G, Ã,Ll

−«A. The one
loop FRG equations are identical to the one given in the text

for G̃ andÃ apart from the(linear) rescaling part(not involv-

ing z) being identical to that forD̃. One can then check that
the relation

G̃sud = D̃8sud, sG17d

Ãsud = − h̄2D̃9sud, sG18d

specific to this model, are indeed exactly preserved by the
FRG, as announced in the text. Computing the correction to
the self-energy yields

]lSsvd = AdLl
d−2hD9s0dfRsvd − Rs0dg + G8s0df2ivRsvd

− ivRs0dg + As0dv2Rsvdj. sG19d

One then checks that this exactly vanishes usingAs0d
=−h̄2D9s0d, G8s0d=h̄D9s0d and the above exact form for
Rsvd.

This model can be further generalized to include second

time derivative termsDÞ0. Adding the termDF̈rt to the
left-hand side of Eq.(G11) one obtains the model in the text
with h̄→q2h̄ andD→q2D in the bare inverse response func-
tion. Similar arguments yield invariance of the FRG function
within the manifold(100) given in the text(third cumulants
have also been included).
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